Vanets Routing paper reading

1、A VANET Routing based on the Real-timeRoad Vehicle Density in the City Environment, Hyun Yu , Joon Yoo , Sanghyun Ahn. ICUFN 2013.

  在这个VANET路由协议中,每辆车利用beacon信息和road imformation table计算某条路上的实时车辆密度信息。基于实时的车辆密度信息,每辆车都能建立起用于包发送的可靠路由。具体地说,每辆车都会周期性地发送beacons包,beacons包括了它本身移动的方向、反向移动的车辆的数目(total number of reverse cars)、它的位置和标识符。于是,每辆车都会将从beacons计算得到的车辆密度信息保存在road information(RI)里面。每次进入一条新的路,RI被创建;当收到新的beacon时,RI被更新。TRC值的计算方式是这样的:TRC=MC*Rd/Cd,Mc是已经统计了的反向的车的值,Cd是进入某条路后移动的距离,Rd是路的长度。每次一收到beacon,Reverse Cars field加一。所以,总的车辆密度是DCn=RTRC + STRC。其中是RTRC是反方向的车辆的密度,STRC是beacon中的TRC的值。在路由时,主要是request messages(RREQs)和reply messages((RREPs)起作用。RREQ消息有三个域,分别是RoadList、RoadHop、MinDensity。最终目的地比较来自不同方向的路由结果,选择MinDensity最大的那条路。

2、GSPR-MV: a Routing Protocol Based on Motion Vector for VANET,Hongyu Tu, Lei Peng, Huiyun Li, Falin Liu. ICSP2014 Proceedings.

  在GPSR的基础上,做了一些改进工作,主要多考虑了节点的快速移动的特性以及转发效率。具体做法是,根据车辆的位置信息,节点的速度、未来的位置都能计算。作者的想法比较简单,没有考虑车辆之间相互影响这类因素。首先,根据计算得到的邻居节点的速度和方向,来排除掉那些和本车反方向的车作为转发节点的可能性。再依据车辆的速度和运动方向,预测未来自己和邻居车辆的位置,筛除掉那些离目的地太远的节点。最后,假设存在一些节点,和源节点的距离差不多,这就需要比较速度来选择相应的车。

3、Directed Information Dissemination in VANET, A.K.M. Mahtab Hossain etc. AINTEC’11

  改进了MPR算法,使之能够适用于车辆后面MPR节点的识别(back MPR identification alogorithm)。

4、Routing in Vehicular Ad Hoc Networks: A Survey. Fan Li and Yu Wang. IEEE VEHICULAR TECHNOLOGY MAGAZINE | JUNE 2007
  一篇关于VANETS中Routing的Survey,它将VANETS中的routing的工作分为了几类:Ad Hoc Routing(AODV, DSR), Position-Based Routing, Cluster-Based Routing, Broadcast Routing, Geocast Routing。并且,在论文后面给出了一张比较各种路由协议的表。

5、An adaptive approach for information dissemination in Vehicular Ad hoc Networks

  主要介绍了一个非集中式的和自适应的信息分发的方法。除此之外,这篇论文还对广播类的信息分发协议做了一个总结。

时间: 2024-09-30 15:54:39

Vanets Routing paper reading的相关文章

Paper Reading: Stereo DSO

开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras Abstract Optimization objectives: intrinsic/extrinsic parameters of all keyframes all selected pixels' depth Inte

Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 2017 This paper use GAN to handle the issue of small object detection which is a very hard problem in general object detection. As shown in the followin

【Paper Reading】Object Recognition from Scale-Invariant Features

Paper: Object Recognition from Scale-Invariant Features Sorce: http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf SIFT 即Scale Invariant Feature Transfrom, 尺度不变变换,由David Lowe提出.是CV最著名也最常用的特征.在图像目标识别的应用中,常常要求图像的特征有很好的roboust即不容易受到平移,旋转,尺度缩放,光照,仿射的英雄.SIFT算子具有

Paper Reading: Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual TrackingECCV 2016  The key point of KCF is the ability to efficiently exploit available negative data by including all shifted versions of a training sample, in anthor w

CVPR 2016 paper reading (6)

1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun, in CVPR 2015. Goal: learn and predict how fashionable a person looks on a photograph, and suggest subtle

paper reading in 1/1/2016~1/3/2016

CVPR15:Person Count Localization in Videos from Noisy Foreground and Detections paper主要的contribution是定义了person count localization及其周边,不过虽然之前提过的person count问题常用结果评估标准是只看最后给出的counts,但其实之前的文章也并不完全是只给出global counts的.文中可能是更加重视这个localization的问题并且确实是利用这个信息去

Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes from: http://blog.csdn.net/shuzfan/article/details/70069822 Paper:  https://arxiv.org/abs/1703.07737 Github: https://github.com/VisualComputingInstitu

【Paper Reading】Learning while Reading

Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为我们是整个口语交流社会共同遵守的协定的参与者,这个协定以语言的形式固定下来.除非赞成这个协定中规定的有关语言信息的组织和分类,否则我们根本无法交谈. --Benjamin Lee Whorf Learning and Asking 为什么选择面向对象? 机器语言.汇编语言.面向过程的语言,通过一层层

Paper Reading - Attention Is All You Need ( NIPS 2017 )

Link of the Paper: https://arxiv.org/abs/1706.03762 Motivation: The inherently sequential nature of Recurrent Models precludes parallelization within training examples. Attention mechanisms have become an integral part of compelling sequence modeling