ORACLE直方图(10g)

为什么需要直方图 ?当表中一列数据比较的值分布比较均匀时,optimzer可以很好的通过最大值,最小值和NDV(唯一值的个数),就可以判断出cardinality.对于cardinality越精确,optimzer就可以更加好的选择执行计划。

--创建测试表并插入数据

create table t1(a int,b varchar2(100));

begin

for i in 1..100 loop

insert into t1 values (1,‘abcd‘);

end loop;

commit;

end;

/

begin

for i in 1..100 loop

insert into t1 values (2,‘efg‘);

end loop;

commit;

end;

/

---收集统计信息

exec dbms_stats.gather_table_stats(tabname => ‘t1‘,ownname => user,method_opt => ‘for all columns size 1‘); --for all columns size 1 不收集直方图信息

---执行一个语句来看看optimizer评估的行

explain plan for select * from t1 where a=1;

select * from table(dbms_xplan.display());

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |   100 |   700 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| T2   |   100 |   700 |     3   (0)| 00:00:01 |

--------------------------------------------------------------------------

返回100行,说明优化器在这种数据平均分布的情况下评估很准确。现在insert into t1 values(3,‘mnb‘); 一行,人为的模拟数据分布不均,再次收集统计信息

explain plan for select * from t1 where a=3;

PLAN_TABLE_OUTPUT

--------------------------------------------------------------------------------

Plan hash value: 1513984157

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |    67 |   469 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| T2   |    67 |   469 |     3   (0)| 00:00:01 |

--------------------------------------------------------------------------

优化器评估为67行.计算公式为 rows/ndv=(200/3)=66.66666

看看收集了集方图后的结果

SQL> exec dbms_stats.gather_table_stats(tabname => ‘T1‘,ownname => user,method_opt => ‘FOR ALL COLUMNS SIZE AUTO‘);

SQL>  explain plan for select * from t1 where a=3;

PLAN_TABLE_OUTPUT

--------------------------------------------------------------------------------

Plan hash value: 1513984157

--------------------------------------------------------------------------

| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |

--------------------------------------------------------------------------

|   0 | SELECT STATEMENT  |      |     1 |     7 |     3   (0)| 00:00:01 |

|*  1 |  TABLE ACCESS FULL| T2   |     1 |     7 |     3   (0)| 00:00:01 |

--------------------------------------------------------------------------

可以看出通过增加了直方图,oracle比较准确的评估了cardinality。

SQL> select column_name,histogram from user_tab_col_statistics where table_name=‘T2‘;

COLUMN_NAME                    HISTOGRAM

------------------------------ ---------------

A                              FREQUENCY       --频率直方图

B                              NONE

直方图分为两种频率直方图和高度平衡直方图

直方图的限制:1,收集直方图有开销,如cpu和磁盘空间;2,对于每个栏位超过254的distinct value,频率直方图的作用开始下降

随着NDV的增加,精度进一步下降,这时候只能使用高度平衡直方图.3,对于字符类型,只能收集前32个字节;

4,在非索引的栏位上收集直方图的效果有限.

高度平衡和频率直方图的选择:对于某个栏位的NDV小于所定义的桶数,使用频率直方图,否则使用高度平衡直方图。两种方式的最大的桶数为254,

SQL> create table t2(a int);

begin

for i in 1..76 loop

insert into t2 values (i);

end loop;

commit;

end;

/

SQL> select count(distinct a) from t2;  --insert 76种不同的值

COUNT(DISTINCTA)

----------------

76

SQL> exec dbms_stats.gather_table_stats(tabname => ‘T2‘,ownname => user,method_opt => ‘FOR COLUMNS A SIZE 75‘);

人为的定义桶数小于NDV,在这种条件,oracle会使用高度平衡直方图,因为频率直方图75个bucket容不下76

SQL>  select column_name,histogram from user_tab_col_statistics where table_name=‘T2‘;

COLUMN_NAME                    HISTOGRAM

------------------------------ ---------------

A                              HEIGHT BALANCED

对于频率直方图,如果NDV小于254的情况,ndv应该是和桶数相等的.有些bug会产生不一致,导致评估不准确,具体可以参考metalink的相关bug。

SQL> select count(b.endpoint_value) from user_histograms b where table_name=‘T1‘ and column_name=‘A‘;

COUNT(B.ENDPOINT_VALUE)

-----------------------

3

SQL> select table_name,column_name,num_distinct from user_tab_col_statistics where table_name=‘T1‘ and column_name=‘A‘;

TABLE_NAME                     COLUMN_NAME                    NUM_DISTINCT

------------------------------ ------------------------------ ------------

T2                             A                                         3

一般建议的收集方法为‘FOR ALL COLUMNS SIZE AUTO‘,除非有很好的理由去更改,由oracle自行决定是否需要histogram和桶数

为什么需要直方图 ?当表中一列数据比较的值分布比较均匀时,optimzer可以很好的通过最大值,最小值和NDV(唯一值的个数),就可以判断出cardinality.对于cardinality越精确,optimzer就可以更加好的选择执行计划。
--创建测试表并插入数据create table t1(a int,b varchar2(100));beginfor i in 1..100 loopinsert into t1 values (1,‘abcd‘);end loop;commit;end;/beginfor i in 1..100 loopinsert into t1 values (2,‘efg‘);end loop;commit;end;/---收集统计信息exec dbms_stats.gather_table_stats(tabname => ‘t1‘,ownname => user,method_opt => ‘for all columns size 1‘); --for all columns size 1 不收集直方图信息
---执行一个语句来看看optimizer评估的行explain plan for select * from t1 where a=1;select * from table(dbms_xplan.display());--------------------------------------------------------------------------| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |--------------------------------------------------------------------------|   0 | SELECT STATEMENT  |      |   100 |   700 |     3   (0)| 00:00:01 ||*  1 |  TABLE ACCESS FULL| T2   |   100 |   700 |     3   (0)| 00:00:01 |--------------------------------------------------------------------------返回100行,说明优化器在这种数据平均分布的情况下评估很准确。现在insert into t1 values(3,‘mnb‘); 一行,人为的模拟数据分布不均,再次收集统计信息explain plan for select * from t1 where a=3;PLAN_TABLE_OUTPUT--------------------------------------------------------------------------------Plan hash value: 1513984157--------------------------------------------------------------------------| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |--------------------------------------------------------------------------|   0 | SELECT STATEMENT  |      |    67 |   469 |     3   (0)| 00:00:01 ||*  1 |  TABLE ACCESS FULL| T2   |    67 |   469 |     3   (0)| 00:00:01 |--------------------------------------------------------------------------优化器评估为67行.计算公式为 rows/ndv=(200/3)=66.66666看看收集了集方图后的结果SQL> exec dbms_stats.gather_table_stats(tabname => ‘T1‘,ownname => user,method_opt => ‘FOR ALL COLUMNS SIZE AUTO‘);SQL>  explain plan for select * from t1 where a=3;PLAN_TABLE_OUTPUT--------------------------------------------------------------------------------Plan hash value: 1513984157--------------------------------------------------------------------------| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |--------------------------------------------------------------------------|   0 | SELECT STATEMENT  |      |     1 |     7 |     3   (0)| 00:00:01 ||*  1 |  TABLE ACCESS FULL| T2   |     1 |     7 |     3   (0)| 00:00:01 |--------------------------------------------------------------------------可以看出通过增加了直方图,oracle比较准确的评估了cardinality。SQL> select column_name,histogram from user_tab_col_statistics where table_name=‘T2‘;COLUMN_NAME                    HISTOGRAM------------------------------ ---------------A                              FREQUENCY       --频率直方图B                              NONE直方图分为两种频率直方图和高度平衡直方图直方图的限制:1,收集直方图有开销,如cpu和磁盘空间;2,对于每个栏位超过254的distinct value,频率直方图的作用开始下降随着NDV的增加,精度进一步下降,这时候只能使用高度平衡直方图.3,对于字符类型,只能收集前32个字节;4,在非索引的栏位上收集直方图的效果有限.高度平衡和频率直方图的选择:对于某个栏位的NDV小于所定义的桶数,使用频率直方图,否则使用高度平衡直方图。两种方式的最大的桶数为254,SQL> create table t2(a int);beginfor i in 1..76 loopinsert into t2 values (i);end loop;commit;end;/SQL> select count(distinct a) from t2;  --insert 76种不同的值COUNT(DISTINCTA)----------------              76SQL> exec dbms_stats.gather_table_stats(tabname => ‘T2‘,ownname => user,method_opt => ‘FOR COLUMNS A SIZE 75‘);人为的定义桶数小于NDV,在这种条件,oracle会使用高度平衡直方图,因为频率直方图75个bucket容不下76SQL>  select column_name,histogram from user_tab_col_statistics where table_name=‘T2‘;COLUMN_NAME                    HISTOGRAM------------------------------ ---------------A                              HEIGHT BALANCED
对于频率直方图,如果NDV小于254的情况,ndv应该是和桶数相等的.有些bug会产生不一致,导致评估不准确,具体可以参考metalink的相关bug。SQL> select count(b.endpoint_value) from user_histograms b where table_name=‘T1‘ and column_name=‘A‘;COUNT(B.ENDPOINT_VALUE)-----------------------                      3SQL> select table_name,column_name,num_distinct from user_tab_col_statistics where table_name=‘T1‘ and column_name=‘A‘;TABLE_NAME                     COLUMN_NAME                    NUM_DISTINCT------------------------------ ------------------------------ ------------T2                             A                                         3一般建议的收集方法为‘FOR ALL COLUMNS SIZE AUTO‘,除非有很好的理由去更改,由oracle自行决定是否需要histogram和桶数

时间: 2024-10-28 10:26:17

ORACLE直方图(10g)的相关文章

Oracle直方图的详细解析(转)

Oracle直方图解析 一.    何谓直方图: 直方图是一种统计学上的工具,并非Oracle专有.通常用于对被管理对象的某个方面的质量情况进行管理,通常情况下它会表现为一种几何图形表,这个图形表是根据从实际环境中所收集来的被管理对象某个方面的质量分布情况的数据所绘制成的,通常会画成以数量为底边,以频度为高度的一系列连接起来的矩形图,因此直方图在统计学上也称为质量分布图.比如下图所示,是一个以关学生化学考试成绩分数分布情况绘制的直方图:              二.       Oracle中

Oracle直方图的详细解析

yuanwen:http://blog.csdn.net/javacoffe/article/details/5578206 Oracle直方图解析 一.    何谓直方图: 直方图是一种统计学上的工具,并非Oracle专有.通常用于对被管理对象的某个方面的质量情况进行管理,通常情况下它会表现为一种几何图形表,这个图形表是根据从实际环境中所收集来的被管理对象某个方面的质量分布情况的数据所绘制成的,通常会画成以数量为底边,以频度为高度的一系列连接起来的矩形图,因此直方图在统计学上也称为质量分布图.

Linux Oracle Rac 10G 搭建& Patch

Oracle Real Application Clusters 简称Oracle Rac 实施应用群集 环境接受 Virtual Machine(虚拟机):VirtualBox 4.2.18 系统平台:Oracle Enterprise Linux 5.7 X86_64 Software Packet:Oracle Database 10 R2 X86_64 for Linux Oracle 10201_clusterware_linux 虚拟机设置 Linux 内存4G 硬盘大小60G(推荐

Oracle Forms 10g Tutorial Ebook Download - Oracle Forms Blog

A step by step tutorial for Oracle Forms 10g development. This guide is helpful for freshers in Oracle forms 10g. To download this ebook click the below button: Download Oracle Forms 10g eBook See Also: Oracle Forms Recipes - Get it from Google Playh

Oracle 直方图理论

一.何为直方图 直方图是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边.以频数为高度的一系列连接起来的直方型矩形图,如图所示 二.ORACLE 直方图 在Oracle中直方图是一种对数据分布情况进行描述的工具.它会按照某一列不同值出现数量多少,以及出现的频率高低来绘制数据的分布情况,以便能够指导优化器根据数据的分布做出正确的选择.在某些情况下,表的列中的数值分布将会影响优化器使用索引还是执行全表扫描的决策. 直方图的使用不受索引的限制,可以在表的任何列上构建直方图

Oracle Client 10g (instantclient) 精简版安装

今天遇到个软件要求安装oracle client端,于是考虑装精简版本的,就从http://www.oracle.com/technology/software/tech/oci/instantclient/index.html下载了instantclient-basic-win32-10.2.0.4.zip(当然你也可以下载其他版本或操作系统的client,如x86.x64,linux等),该版本支持多种语言的.虽然最终精简版是安装成功了,但是该软件还是没有办法使用,估计精简版中没有软件需要的

Oracle直方图导致SQL不走索引.

在ITPUB 上看到一个帖子 http://www.itpub.net/thread-1875212-1-1.html 同一条SQL语句,只有查询条件不一样,查询返回的结果集都为0,一个走了全表扫描,一个走索引.查看全表扫描的SQL语句:SQL走全表,产生了2422609个逻辑读,cost为535KSQL> SELECT URL,YHZH,HFRZY,HFLR,SPURL,TPURL,YPURL,SCSJ,LY,JCSJ FROM YHXX_HFXX T 2       WHERE T.URL=

Oracle GoldenGate (ogg) 11.2.1.0.20 是最后一个支持oracle db 10g的 ogg版本

参考原文: Oracle GoldenGate 11.2.1.0.22 Patch Set Availability (Doc ID 1669160.1) 该文章不做翻译,仅仅摘录其中有价值的信息,如下: Alert! OGG 11.2.1.0.22 is -not- available for Oracle Database 10g. Oracle GoldenGate 11.2.1.0.20 is the Terminal Release for support of Oracle Data

ORACLE DATABASE 10g EXPRESS EDITION LICENSE AGREEMENT

 启动Tomcat之后出现全是英文错误: ORACLE DATABASE 10g EXPRESS EDITION LICENSE AGREEMENT To use this license, you must agree to all of the following terms (by either clicking the accept button or installing and using the program): ELIGIBILITY EXPORT RESTRICTIONS

Windows 7平台安装Oracle Client 10g版本时需要做的一点变更

新发的笔记本,Windows 7 Pro,需要安装Oracle Client,同事给了一个10g的版本.安装过程中提示: "正在检查操作系统要求- 要求的结果: 5.0,5.1,5.2,6.0 之一实际结果: 6.1 检查完成. 此次检查的总体结果为: 失败 <<<< 问题: Oracle Database 10g 未在当前操作系统中经过认证. 这个问题网上有很多帖子回复,其实很简单,Orace软件会依赖于refhost.xml这个文件中定义的操作系统类型来识别.10g版