【Facebook】等差子序列个数

题目:

给定一整数数列,问数列有多少个子序列是等差数列。

即对于包含N个数的数列A,A(0),A(1),……,A(N-1),有多少组(P(0),P(1),……,P(k))满足0<=P(0)<P(1)<……<P(k)<N,且A(P(0)),A(P(1)),……,A(P(k))为等差数列。

等差数列至少包含3个数,故必有k>=2,同时等差数列相邻两个数的差都是一样的,即A(P(1))-A(P(0) = A(P(2))-A(P(1)) = …… = A(P(k))-A(P(k-1)) = d,d被称为公差。

输入保证N个整数的取值范围均为-2^31 ~ 2^31-1,并且0<=N<=1000,同时保证输出小于2^31-1。

Example:

输入: [2, 4, 6, 8, 10]

输出: 7

题解:

来源:九章算法公众号(侵删)。

时间复杂度为O(N^2)的动态规划:

Ⅰ.我们令f(i,d)表示以A(i)结尾,公差为d的等差子序列的个数,这里我们允许存在长度为2的等差子序列(所以对于数列中任意两个数组成的子序列,我们都暂时认为其为等差子序列)。

那么对于一对(i,j),j<i,A(i)-A(j)=d,对于所有以A(j)结尾,公差为d的等差子序列来说,后面再跟上A(i)之后还是公差为d的等差子序列,但变成了以A(i)结尾,再加上一对(A(j),A(i)),就得到了所有形如(……,A(j),A(i))的等差子序列。

换言之,j将对f(i,d)贡献f(j,d)+1。故f(i,d)等于所有满足j<i且A(i)-A(j)=d的(f(j,d)+1)之和。

Ⅱ.一个问题是d的范围其实很大(-2^32+1 ~ 2^32-1),如果要对所有可能的d进行枚举,那么在时间上和空间上都是受不了的。

虽然d的取值范围很大,但是对于N个数来说,两两之差最多只可能有N(N-1)/2种;而对于1个数A(i)来说,只需考虑所有小于i的j所产生的d=A(i)-A(j),最多有i种可能。

所以,对于每一个i,可以用一个HashMap来存储键值对(d,f(i,d))。另一个问题是,我们在计算f(i,d)时,允许等差子序列长度为2(这一点是必要的,因为没有长度为2的序列的话,就没法在其末尾加上一个数得到更长的子序列),但答案要求的是所有长度至少为3的等差子序列的个数。

解决这个问题的方法有很多:在计算f(i,d)时,f(j,d)所表示的所有子序列长度都至少为2,在末尾加上A(i)之后,就成了满足条件的等差子序列,故可以在计算f(i,d)的同时累加所有f(j,d),最后即可得到正确的答案(这种写法比较简洁但不太直观);

也有一种比较容易理解的方法,那就是对所有f(i,d)之和,即所有长度至少为2的等差子序列的个数,减去长度为2的等差子序列的个数,而由于任意两个数都构成长为2的等差子序列,所以其个数为N(N-1)/2,两者相减得到的差即为正确答案。

Ⅲ.总结一下这个动态规划算法:对于每个i=0,1,2,……,N-1,创建一个HashMap存储键值对(d,f(i,d)),f(i,d)的初值为0,枚举j<i,d=A(i)-A(j),则f(i,d)增加f(j,d)+1,同时对答案增加f(j,d)。计算完所有的i之后即可得到答案。

一个小细节是,如果d不在[-2^31+1 , 2^31-1]的范围内,那么以这个d为公差的数列长度不可能是3或3以上,故对于d在这个范围外的情况可以直接跳过。

利用HashMap存取f(i,d),f(j,d)的复杂度为O(1),i,j枚举的复杂度为O(N^2),故总的时间复杂度为O(N^2)。

Solution 1 :

int getNum(const vector<int> &nums) {
    if (nums.size() < 3) {
        return 0;
    }
    vector<unordered_map<int, int>> map(nums.size());
    int res = 0;
    for (int i = 0; i < nums.size(); ++i){
        for (int j = 0; j < i; ++j) {
            if (abs((long)nums[i] - nums[j]) > INT_MAX) {
                continue;
            }
            int d = nums[i] - nums[j];
            int map_i_d, map_j_d;
            map_i_d = map[i].count(d) ? map[i][d] : 0;
            map_j_d = map[j].count(d) ? map[j][d] : 0;
            map_i_d += map_j_d + 1;
            map[i][d] = map_i_d;
            res += map_j_d;
        }
    }
    return res;
}

事实上,确定一个等差数列只需要三个数,一个是等差数列的长度L,还有两个是等差数列的最后两个数(也可以是任意两个中间的下标确定的数)。

记最后一个为E1,最后第二个为E2,则得公差d=E1-E2,通过公差可以推出等差数列中其余的数。

一个以E2,E1,结尾的等差数列,在末尾加上一个数E1+d后仍然是等差数列。于是我们可以使用动态规划求解:令g(i,j)为以A(j),A(i)结尾的等差子序列的个数(j<i),(即形如(……,A(j),A(i))的等差数列的个数),然后我们可以通过枚举倒数第三个数A(k)来统计g(i,j)。

对于形如(……,A(k),A(j))的等差子序列来说,如果有A(i)-A(j)=A(j)-A(k),那么对应的(……,A(k),A(j),A(i))也为等差子序列,同时由于(A(k),A(j))长度为2,不计入g(j,k)的中,但(A(k),A(j),A(i))应计入g(i,j)中,故将g(j,k)计算入g(i,j)时还要额外加1。

于是我们有g(i,j)=Σ(g(j,k)+1),其中k满足k<j且A(i)-A(j)=A(j)-A(k)。将所有得到的g(i,j)相加即可得到所有等差子序列的个数。这个算法的时间复杂度为O(N^3),考虑到N的范围,这样的时间复杂度可以接受,而且与上面讲的算法相比简洁许多。

Solution 2 :

int getAns(const vector<int> &nums) {
    if (nums.size() < 3)
        return 0;
    int n = nums.size();
    vector<vector<int>> v(n, vector<int>(n, 0));
    int res = 0;
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < i; ++j) {
            for (int k = 0; k < j; ++k) {
                if (nums[i] - nums[j] == nums[j] - nums[k]) {
                    v[i][j] = v[j][k] + 1;
                    res += v[i][j];
                }
            }
        }
    }
    return res;
}
时间: 2024-10-05 20:04:53

【Facebook】等差子序列个数的相关文章

Bzoj2124 等差子序列

Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 911  Solved: 337 Description 给一个1到N的排列{Ai},询问是否存在1<=p1=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一个整数T,表示组数.下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开. Output 对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一行“N”.

Codevs 1283 等差子序列

1283 等差子序列 2010年 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 Description 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap2,Ap3,…ApLen 是一个等差序列. 输入描述 Input Description 输入的第一行包含一个整数 T,表示组数. 下接 T 组数据,每组第

[bzoj2124]等差子序列(hash+树状数组)

我又来更博啦 2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Status][Discuss] Description 给一个1到N的排列{Ai},询问是否存在1<=p1=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一个整数T,表示组数.下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开. O

BZOJ 2124: 等差子序列

Sol 线段树+Hash. 首先暴力 等差子序列至少3项就可以了,就枚举中项,枚举公差就可以了,只需要一个数在中项前出现,另一个数在中项前没出现过就可以了.复杂度 \(O(n^2)\) 然后我想了一个虽然复杂度没变(因为我不会设计这个数据结构...) 但是好像有点用的算法,就是枚举中项,考虑从一个中项转移到另一个中项,那就是 \(\pm \Delta\) 就可以了...如果能够用数据结构维护这个操作,那就灰常好了.变换中项也就是变换折叠的位置吧. 标算呢...就是用线段树维护Hash,一个数字出

bzoj 2124 等差子序列 树状数组维护hash+回文串

等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一个整数T,表示组数. 下接T组数据,

1202 子序列个数

1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列.对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量.由于答案比较大,输出Mod 10^9 + 7的

子序列个数(fzu2129)

子序列个数 Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice FZU 2129 Description 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3

BZOJ 2124等差子序列 线段树&amp;&amp;hash

[题目描述 Description] 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap2,Ap3,…ApLen 是一个等差序列. [输入描述 Input Description] 输入的第一行包含一个整数 T,表示组数. 下接 T 组数据,每组第一行一个整数 N,每组第二行为一个 1 到 N 的排列, 数字两两之间用空格隔开. [输出描述 Output Desc

bzoj2124 等差子序列(hash+线段树)

2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 719  Solved: 261[Submit][Status][Discuss] Description 给一个1到N的排列{Ai},询问是否存在1<=p1=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一个整数T,表示组数.下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开. Output 对