图像质量评价

1.PSNR,峰值信噪比

通常用来评价一幅图像压缩后和原图像相比质量的好坏,当然,压缩后图像一定会比原图像质量差的,所以就用这样一个评价指标来规定标准了。PSNR越高,压缩后失真越小。这里主要定义了两个值,一个是均方差MSE,另一个是峰值信噪比PSNR,公式如下:

这里的MAX通常是图像的灰度级,一般就是255了。

close all;
clear all;
clc;

img=imread(‘lena.jpg‘);
[h w]=size(img);
imgn=imresize(img,[floor(h/2) floor(w/2)]);
imgn=imresize(imgn,[h w]);
img=double(img);
imgn=double(imgn);

B=8;                %编码一个像素用多少二进制位
MAX=2^B-1;          %图像有多少灰度级
MES=sum(sum((img-imgn).^2))/(h*w);     %均方差
PSNR=20*log10(MAX/sqrt(MES));           %峰值信噪比

原图

图像宽高分别缩小1/2再放大到原图,PSNR=30.2dB

图像宽高分别缩小1/5再放大到原图,PSNR=24.5dB

可以看出PSNR越高,图像和原图越接近。当然,这都是客观指标,实际评价还有主观指标,不过主观的东西就比较模糊了,每个人感觉都会不同的。

最常用的全参考视频质量评价方法有以下2种:

PSNR(峰值信噪比):用得最多,但是其值不能很好地反映人眼主观感受。一般取值范围:20-40.值越大,视频质量越好。

SSIM(结构相似性):计算稍复杂,其值可以较好地反映人眼主观感受。一般取值范围:0-1.值越大,视频质量越好。

PSNR,SSIM计算有如下工具可选:

MSU Video Quality Measurement Tool:商业软件,图形化界面,易上手,使用有限制。

Evalvid中的psnr.exe:开源软件,命令行界面,使用无限制。推荐,适合批处理。

偶然发现了一个很好的网站。里面包含了大量主观评价算法的数据,导入到Matlab中就可以使用。

http://sse.tongji.edu.cn/linzhang/IQA/IQA.htm

注:MOS(Mean Opnion Score,平均意见分)是主观评价实验之后,得到的主观分数,取值0-100,值越大,代表主观感受越好。

以下实验数据来自Live数据库http://live.ece.utexas.edu/research/Quality/

SSIM参数

一种衡量两幅图像相似度的新指标,其值越大越好,最大为1,

经常用到图像处理中,特别在图像去噪处理中在图像相似度评价上全面超越SNR(signal to noise ratio)和PSNR(peak signal to noise ratio)。

结构相似性理论认为,自然图像信号是高度结构化的,即像素间有很强的相关性,特别是空域中最接近的像素,这种相关性蕴含着视觉场景中物体结构的重要信息;HVS的主要功能是从视野中提取结构信息,可以用对结构信息的度量作为图像感知质量的近似。结构相似性理论是一种不同于以往模拟HVS低阶的组成结构的全新思想,与基于HVS特性的方法相比,最大的区别是自顶向下与自底向上的区别。这一新思想的关键是从对感知误差度量到对感知结构失真度量的转变。它没有试图通过累加与心理物理学简单认知模式有关的误差来估计图像质量,而是直接估计两个复杂结构信号的结构改变,从而在某种程度上绕开了自然图像内容复杂性及多通道去相关的问题。

作为结构相似性理论的实现,结构相似度指数从图像组成的角度将结构信息定义为独立于亮度对比度的,反映场景中物体结构的属性,并将失真建模为亮度、对比度和结构三个不同因素的组合。用均值作为亮度的估计,标准差作为对比度的估计,协方差作为结构相似程度的度量。

结构相似性指标(英文:structural similarity index,SSIM index)是一种用以衡量两张数位影像相似程度的指标。当两张影像其中一张为无失真影像,另一张为失真后的影像,二者的结构相似性可以看成是失真影像的影像品质衡量指标。相较于传统所使用的影像品质衡量指标,像是峰值信噪比(英文:PSNR),结构相似性在影像品质的衡量上更能符合人眼对影像品质的判断。

实际使用时,简化起见,一般会将参数设为,得到:

在计算两张影像的结构相似性指标时,会开一个局部性的视窗,一般为×的小区块,计算出视窗内信号的结构相似性指标,每次以像素为单位移动视窗,直到整张影像每个位置的局部结构相似性指标都计算完毕。将全部的局部结构相似性指标平均起来即为两张影像的结构相似性指标。

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:

opencv和matlab都有现成的函数可以使用。

参考:图像质量评价--SSIM

全参考视频质量评价方法(PSNR,SSIM)以及相关数据库

时间: 2024-12-24 01:24:19

图像质量评价的相关文章

结合浅景深与构图的图像质量评价_爱学术——免费下载

[摘要]近年来,图像质量评价方法在图像处理和理解领域受到越来越多的关注.传统的方法主要关注噪声.清晰度.分辨率等影响图像质量的底层因素.随着数码设备的不断发展,这些底层因素已经得到很好的解决,人们能够很容易地获得具有较高底层质量,即低噪声.高清晰度.高分辨率的图像.因此,图像质量评价的焦点逐渐转向从美学的角度进行评价.对于一幅图像,主要从两个角度来考虑其是否符合人类主观的美学需求:1)图像的主题是否突出;2)图像的布局是否合理.基于上述考虑,提出一种结合图像景深和构图的质量评价方法:一方面,提出

一种基于FSIM对视频编码图像质量客观评价的方法

一 为什么对视频编码图像质量客观评价     视频图像质量主观评价一般采用连续双激励质量度量法对任一观测者连续给出原始视频图像和处理过的失真图像,由观测者根据主观感知给出分值,其需针对多个视频对象进行多次重复实验,耗时多.费用高,难以操作:而视频编码图像的客观评价早期主要采用峰值信噪比(PSNR)或均方差(MSE)衡量视频序列的失真度,虽然其具有操作简单.成本低.易于实现的特点,但是由于其忽略了图像内容对人眼的影响,不能完整地反映出图像的质量.所以现实中还是多以主观评价方式为主的,码率影响视频请

图像全参考客观评价算法比较

Lin Zhang等人在论文<A COMPREHENSIVEEVALUATION OF FULL REFERENCE IMAGE QUALITY ASSESSMENT ALGORITHMS>中,比较了几种全参考图像质量评价算法,在此记录一下他们的结果. 下表所示是他们所用的图像库,包含了:TID2008database,CSIQ database,LIVEdatabase,IVCdatabase,Toyama-MICTdatabase,Cornell A57 database,以及 Wirel

opencv---JPEG图像质量检测代码

参考:http://blog.csdn.net/trent1985/article/details/50904173 根据国外一篇大牛的文章:No-Reference Perceptual Quality Assessment of JPEG Compressed Images 在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊.本文针对无参考图像质量评价应用,对目前几种较为常用的.具有代表性清晰度算法进行讨论分

IQA+不懂︱图像清洗:图像质量评估

深度学习技术如火如荼,但是训练的图像集都是标注好.质量高的,那么笔者对如何进行图像清洗表示好奇.难道只有让工人肉眼看吗?一些传统的IQA都是基于图像本身质量去评价,那么我想知道,之外的图像信息质量该如何评估? . 一.IQA评估指标 现在还不知道除了肉眼之外的好办法,只能先来列举一下传统IQA的一些评估指标(主要参考论文:<无参考图像质量评价综述>): . 1.MOS.DMOS 图像质量评价可以分为主观评价方法和客观评价方法, 主观评价由观察者对图像质量进行主观评分, 一般采用平均主观得分(M

图像全參考客观评价算法比較

Lin Zhang等人在论文<A COMPREHENSIVEEVALUATION OF FULL REFERENCE IMAGE QUALITY ASSESSMENT ALGORITHMS>中.比較了几种全參考图像质量评价算法,在此记录一下他们的结果. 下表所看到的是他们所用的图像库,包括了:TID2008database,CSIQ database,LIVEdatabase,IVCdatabase,Toyama-MICTdatabase,Cornell A57 database,以及 Wir

图像清晰度的评价及分析

图像清晰度的评价及分析 2016年07月28日 17:54:22 clxiaoclxiao 阅读数:17963更多 个人分类: opencv 在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊.本文针对无参考图像质量评价应用,对目前几种较为常用的.具有代表性清晰度算法进行讨论分析,为实际应用中选择清晰度算法提供依据. (1)Brenner 梯度函数 Brenner梯度函数是最简单的梯度评价函数,它只是简单的计算相

图像处理与计算机视觉基础,经典以及最近发展

*************************************************************************************************************** 在这里,我特别声明:本文章的源作者是   杨晓冬  (个人邮箱:[email protected]).原文的链接是 http://www.iask.sina.com.cn/u/2252291285/ish.版权归 杨晓冬 朋友所有. 我非常感谢原作者辛勤地编写本文章,并愿意共

图像处理与计算机视觉:图像处理与分析

1. Bilateral Filter Bilateral Filter俗称双边滤波器是一种简单实用的具有保持边缘作用的平缓滤波器,由Tomasi等在1998年提出.它现在已经发挥着重大作用,尤其是在HDR领域. [1998 ICCV] BilateralFiltering for Gray and Color Images [2008 TIP] AdaptiveBilateral Filter for Sharpness Enhancement and Noise Removal 2. Col