目录
1 问题描述
2 解决方案
2.1 动态规划法
1 问题描述
现需找零金额为n,则最少需要用多少面值为d1 < d2 < d3 < ... < dm的硬币?(PS:假设这m种面值d1 < d2 < d3 < ... < dm的硬币,其中d1 = 1,且每种硬币数量无限可得)
2 解决方案
2.1 动态规划法
本文编码思想参考自《算法设计与分析基础》第三版,具体讲解如下:
具体代码如下:
package com.liuzhen.chapter8; public class ChangeMaking { public void getChangeMakingN(int[] coinType,int n){ int[] minNumber = new int[n+1]; //初始化后,所有元素均为0,其中minNumber[0] = 0,表示无须找零 int[] tempMinJ = new int[n+1]; //tempMinJ[0]在此处无含义 for(int i = 1;i <= n;i++){ int j = 0; int tempJ = -1; //用于h获取minNumber[i]最小值中当前新使用的硬币面值数组下标 int temp = Integer.MAX_VALUE; //计算当前minNumber[i]最小值,初始化int类型最大值 while(j < coinType.length && i >= coinType[j]){ if(minNumber[i-coinType[j]] + 1 < temp){ temp = minNumber[i-coinType[j]] + 1; tempJ = j; } j++; } minNumber[i] = temp; tempMinJ[i] = tempJ; } System.out.println("给定硬币面值种类依次为:"); for(int i = 0;i < coinType.length;i++) System.out.print(coinType[i]+" "); System.out.println("\n找零大小从1到"+n+"的最少硬币组合数目为:"); for(int i = 1;i < minNumber.length;i++) System.out.print(minNumber[i]+" "); System.out.println("\n对应找零大小从1到"+n+"新增的硬币数组下标为:"); for(int i = 1;i < tempMinJ.length;i++) System.out.print(tempMinJ[i]+" "); System.out.println("\n对应找零大小从1到"+n+"新增的硬币数组下标对应的硬币面值为:"); for(int i = 1;i < tempMinJ.length;i++) System.out.print(coinType[tempMinJ[i]]+" "); System.out.println("\n\n找零大小为"+n+"的硬币组合最少数目为:"+minNumber[minNumber.length-1]); System.out.print("找零大小为"+n+"的硬币组合最少数目对应的硬币面值依次为:"); int needN = n; int minJ = tempMinJ.length-1; while(needN > 0){ System.out.print(coinType[tempMinJ[minJ]]+" "); needN = needN - coinType[tempMinJ[minJ]]; minJ = needN; } } public static void main(String[] args){ ChangeMaking test = new ChangeMaking(); int[] coinType = {1,3,4}; test.getChangeMakingN(coinType, 6); } }
运行结果:
给定硬币面值种类依次为: 1 3 4 找零大小从1到6的最少硬币组合数目为: 1 2 1 1 2 2 对应找零大小从1到6新增的硬币数组下标为: 0 0 1 2 0 1 对应找零大小从1到6新增的硬币数组下标对应的硬币面值为: 1 1 3 4 1 3 找零大小为6的硬币组合最少数目为:2 找零大小为6的硬币组合最少数目对应的硬币面值依次为:3 3
参考资料:
1.算法设计与分析基础(第3版) Anany Levitin 著 潘彦 译
时间: 2024-10-05 23:27:17