FCM聚类算法介绍

FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则是一种柔性的模糊划分。在介绍FCM具体算法之前我们先介绍一些模糊集合的基本知识。

1 模糊集基本知识

首先说明隶属度函数的概念。隶属度函数是表示一个对象x隶属于集合A的程度的函数,通常记做μA(x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的所有点),取值范围是[0,1],即0<=μA(x)<=1。μA(x)=1表示x完全隶属于集合A,相当于传统集合概念上的x∈A。一个定义在空间X={x}上的隶属度函数就定义了一个模糊集合A,或者叫定义在论域X={x}上的模糊子集。对于有限个对象x1,x2,……,xn模糊集合可以表示为:

   (6.1)

有了模糊集合的概念,一个元素隶属于模糊集合就不是硬性的了,在聚类的问题中,可以把聚类生成的簇看成模糊集合,因此,每个样本点隶属于簇的隶属度就是[0,1]区间里面的值。

2 K均值聚类算法(HCM,K-Means)介绍

K均值聚类(K-Means),即众所周知的C均值聚类,已经应用到各种领域。它的核心思想如下:算法把n个向量xj(1,2…,n)分为c个组Gi(i=1,2,…,c),并求每组的聚类中心,使得非相似性(或距离)指标的价值函数(或目标函数)达到最小。当选择欧几里德距离为组j中向量xk与相应聚类中心ci间的非相似性指标时,价值函数可定义为:

       (6.2)

这里是组i内的价值函数。这样Ji的值依赖于Gi的几何特性和ci的位置。

一般来说,可用一个通用距离函数d(xk,ci)代替组I中的向量xk,则相应的总价值函数可表示为:

        (6.3)

为简单起见,这里用欧几里德距离作为向量的非相似性指标,且总的价值函数表示为(6.2)式。

划分过的组一般用一个c×n的二维隶属矩阵U来定义。如果第j个数据点xj属于组i,则U中的元素uij为1;否则,该元素取0。一旦确定聚类中心ci,可导出如下使式(6.2)最小uij:

     (6.4)

重申一点,如果ci是xj的最近的聚类中心,那么xj属于组i。由于一个给定数据只能属于一个组,所以隶属矩阵U具有如下性质:

       (6.5)

                 (6.6)

另一方面,如果固定uij则使(6.2)式最小的最佳聚类中心就是组I中所有向量的均值:

               (6.7)

这里|Gi|是Gi的规模或。

为便于批模式运行,这里给出数据集xi(1,2…,n)的K均值算法;该算法重复使用下列步骤,确定聚类中心ci和隶属矩阵U:

步骤1:初始化聚类中心ci,i=1,…,c。典型的做法是从所有数据点中任取c个点。

步骤2:用式(6.4)确定隶属矩阵U。

步骤3:根据式(6.2)计算价值函数。如果它小于某个确定的阀值,或它相对上次价值函数质的改变量小于某个阀值,则算法停止。

步骤4:根据式(6.5)修正聚类中心。返回步骤2。

该算法本身是迭代的,且不能确保它收敛于最优解。K均值算法的性能依赖于聚类中心的初始位置。所以,为了使它可取,要么用一些前端方法求好的初始聚类中心;要么每次用不同的初始聚类中心,将该算法运行多次。此外,上述算法仅仅是一种具有代表性的方法;我们还可以先初始化一个任意的隶属矩阵,然后再执行迭代过程。

K均值算法也可以在线方式运行。这时,通过时间平均,导出相应的聚类中心和相应的组。即对于给定的数据点x,该算法求最近的聚类中心ci,并用下面公式进行修正:

             (6.8)

这种在线公式本质上嵌入了许多非监督学习神经元网络的学习法则。

3   模糊C均值聚类

  模糊C均值聚类(FCM),即众所周知的模糊ISODATA,是用隶属度确定每个数据点属于某个聚类的程度的一种聚类算法。1973年,Bezdek提出了该算法,作为早期硬C均值聚类(HCM)方法的一种改进。

FCM把n个向量xi(i=1,2,…,n)分为c个模糊组,并求每组的聚类中心,使得非相似性指标的价值函数达到最小。FCM与HCM的主要区别在于FCM用模糊划分,使得每个给定数据点用值在0,1间的隶属度来确定其属于各个组的程度。与引入模糊划分相适应,隶属矩阵U允许有取值在0,1间的元素。不过,加上归一化规定,一个数据集的隶属度的和总等于1:

             (6.9)

那么,FCM的价值函数(或目标函数)就是式(6.2)的一般化形式:

          (6.10)

这里uij介于0,1间;ci为模糊组I的聚类中心,dij=||ci-xj||为第I个聚类中心与第j个数据点间的欧几里德距离;且是一个加权指数。

构造如下新的目标函数,可求得使(6.10)式达到最小值的必要条件:

      (6.11)

这里lj,j=1到n,是(6.9)式的n个约束式的拉格朗日乘子。对所有输入参量求导,使式(6.10)达到最小的必要条件为:

              (6.12)

       (6.13)

由上述两个必要条件,模糊C均值聚类算法是一个简单的迭代过程。在批处理方式运行时,FCM用下列步骤确定聚类中心ci和隶属矩阵U[1]:

步骤1:用值在0,1间的随机数初始化隶属矩阵U,使其满足式(6.9)中的约束条件

步骤2:用式(6.12)计算c个聚类中心ci,i=1,…,c。

步骤3:根据式(6.10)计算价值函数。如果它小于某个确定的阀值,或它相对上次价值函数值的改变量小于某个阀值,则算法停止。

步骤4:用(6.13)计算新的U矩阵。返回步骤2。

上述算法也可以先初始化聚类中心,然后再执行迭代过程。由于不能确保FCM收敛于一个最优解。算法的性能依赖于初始聚类中心。因此,我们要么用另外的快速算法确定初始聚类中心,要么每次用不同的初始聚类中心启动该算法,多次运行FCM。

4 FCM算法的应用

通过上面的讨论,我们不难看出FCM算法需要两个参数一个是聚类数目C,另一个是参数m。一般来讲C要远远小于聚类样本的总个数,同时要保证C>1。对于m,它是一个控制算法的柔性的参数,如果m过大,则聚类效果会很次,而如果m过小则算法会接近HCM聚类算法。

算法的输出是C个聚类中心点向量和C*N的一个模糊划分矩阵,这个矩阵表示的是每个样本点属于每个类的隶属度。根据这个划分矩阵按照模糊集合中的最大隶属原则就能够确定每个样本点归为哪个类。聚类中心表示的是每个类的平均特征,可以认为是这个类的代表点。

从算法的推导过程中我们不难看出,算法对于满足正态分布的数据聚类效果会很好,另外,算法对孤立点是敏感的。

时间: 2024-10-23 18:17:46

FCM聚类算法介绍的相关文章

基于位置信息的聚类算法介绍及模型选择

百度百科 聚类:将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异."物以类聚,人以群分",在自然科学和社会科学中,存在着大量的分类问题.聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法.聚类分析起源于分类学,但是聚类不等于分类.聚类与分类的不同在于,聚类所要求划分的类是未知的. 分类和聚类算法一直以来都是数据挖掘,机器学习领域的热门课题,因此产生了众多的

文本聚类算法介绍

转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/44977889 http://www.llwjy.com/blogdetail/41b268618a679a6ec9652f3635432057.html 个人博客站已经上线了,网址 www.llwjy.com ~欢迎各位吐槽~ ----------------------------------------------------------------------------

看完这篇文章,包你懂得如何用Python实现聚类算法的层次算法!

什么是聚类 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异.聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法. 聚类分析起源于分类学,但是聚类不等于分类.聚类与分类的不同在于,聚类所要求划分的类是未知的.聚类分析内容非常丰富,有系统聚类法.有序样品聚类法.动态聚类法.模糊聚类法.图论聚类法.聚类预报法等. 起步 层次聚类( Hierarchical Cluste

K-means聚类算法的三种改进(K-means++,ISODATA,Kernel K-means)介绍与对比

  一.概述 在本篇文章中将对四种聚类算法(K-means,K-means++,ISODATA和Kernel K-means)进行详细介绍,并利用数据集来真实地反映这四种算法之间的区别. 首先需要明确的是上述四种算法都属于"硬聚类"算法,即数据集中每一个样本都是被100%确定得分到某一个类别中.与之相对的"软聚类"可以理解为每个样本是以一定的概率被分到某一个类别中. 先简要阐述下上述四种算法之间的关系,已经了解过经典K-means算法的读者应该会有所体会.没有了解过

mahout in Action2.2-聚类介绍-K-means聚类算法

聚类介绍 本章包括 1 实战操作了解聚类 2.了解相似性概念 3 使用mahout运行一个简单的聚类实例 4.用于聚类的各种不同的距离测算方法 作为人类,我们倾向于与志同道合的人合作-"鸟的羽毛聚集在一起.我们能够发现重复的模式通过联系在我们的记忆中的我们看到的.听到的.问道的.尝到的东 西. 例如,相比较盐 ,糖能够是我们更多地想起蜜.所以我们把糖和蜜的味道结合起来叫他们甜蜜.甚至我们不知道甜蜜的味道,但是知道他跟世界上所有的含糖的东西是相似的,是同 一类的.我们还知道它与盐是不同类的东西.无

学习笔记:聚类算法Kmeans

前记 Kmeans是最简单的聚类算法之一,但是运用十分广泛,最近看到别人找实习笔试时有考到Kmeans,故复习一下顺手整理成一篇笔记.Kmeans的目标是:把n 个样本点划分到k 个类簇中,使得每个点都属于离它最近的质心对应的类簇,以之作为聚类的标准.质心,是指一个类簇内部所有样本点的均值. 算法描述 Step 1. 从数据集中随机选取K个点作为初始质心         将每个点指派到最近的质心,形成k个类簇 Step 2. repeat             重新计算各个类簇的质心(即类内部

《机器学习实战》之K-均值聚类算法的python实现

<机器学习实战>之K-均值聚类算法的python实现 最近的项目是关于"基于数据挖掘的电路故障分析",项目基本上都是师兄们在做,我只是在研究关于项目中用到的如下几种算法:二分均值聚类.最近邻分类.基于规则的分类器以及支持向量机.基于项目的保密性(其实也没有什么保密的,但是怕以后老板看到我写的这篇博文,所以,你懂的),这里就不介绍"基于数据挖掘的电路故障分析"的思路了. 废话不多说了,开始正题哈. 基本K-均值聚类算法 基本K均值算法的基本思路为:首先选择

5.无监督学习-DBSCAN聚类算法及应用

DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1.核心点:在半径Eps内含有超过MinPts数目的点. 2.边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内的点. 3.噪音点:既不是核心点也不是边界点的点. 如下图所示:图中黄色的点为边界点,因为在半径Eps内,它领域内的点不超过MinPts个,我们这里设置的MinPts为5

复杂网络中聚类算法总结

网络,数学上称为图,最早研究始于1736年欧拉的哥尼斯堡七桥问题,但是之后关于图的研究发展缓慢,直到1936年,才有了第一本关于图论研究的著作.20世纪60年代,两位匈牙利数学家Erdos和Renyi建立了随机图理论,被公认为是在数学上开创了复杂网络理论的系统性研究.之后的40年里,人们一直讲随机图理论作为复杂网络研究的基本理论.然而,绝大多数的实际网络并不是完全随机的.1998年,Watts及其导师Strogatz在Nature上的文章<Collective Dynamics of Small