常见的目标检测中的背景建模方法

Author: JW. ZHOU

2014/6/13

  最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章。一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结。

背景建模或前景检测的算法主要有:

1. Single Gaussian (单高斯模型)

Real-time tracking of the human body

2. 混合高斯模型(Mixture of Gaussian Model

An improved adaptive background mixture model for real-time tracking with shadow detection

3. 滑动高斯平均(Running Gaussian average---Single Gaussian

Real-time tracking of the human body

4. 码本 (CodeBook)

Real-time foreground–background segmentation using codebook model

Real-time foreground-background segmentation using a modified codebook model

5. 自组织背景检测( SOBS-Self-organization background subtraction)

A self-Organizing approach to background subtraction for+visual surveillance

6. 样本一致性背景建模算法 (SACON)

A consensus-based method for tracking

A consensus-based method for tracking-Modelling background scenario and foreground appearance

SACON-Background subtraction based on a robust consensus method

7. VIBE算法

ViBe-A Universal Background Subtraction

8. 基于颜色信息的背景建模方法(Color)

A statistical approach for real-time robust background subtraction and shadow detection

9. 统计平均法

10. 中值滤波法( Temporal Median filter)

Automatic congestion detection system for underground platform

Detecting moving objects,ghost,and shadows in video streams

11. W4方法

W4.pdf

12. 本征背景法

A Bayesian computer vision system for modeling human interactions

13. 核密度估计方法

Non-parametric model for background subtraction

对于单高斯和混合高斯估计大家都熟悉,这里不再累述(混合高斯在现有的背景建模算法中应该算是比较好的,很多新的算法或改进的算法都是基于它的一些原理的不同变体,但混合高斯算法的缺点是计算量相对比较大,速度偏慢,对光照敏感,不过作出一些改进还是可以用的,好多公司都是用这个算法的改进版,还是可以进行算法和逻辑上优化的);对与Codebook算法,曾经做过实验,效果还可以,后来也有多种变体,没有进一步的进行研究,但算法对光照也敏感,以前一个同学做过,感觉特别耗时);对于自组织背景建模算法即SOBS算法,该算法对光照有一定的鲁棒性,但MAP的模型比输入图片大,计算量比较大,但是可以通过并行处理来解决算法的速度问题,可以进行尝试;SACON算法是基于统计的知识,代码实现过,并做过实验,效果还可以,但没有进一步的分析;VIBE算法是B哥的一个大作,网上有现成的算法可用,但已申请了专利,用于做研究还是可以的,该算法速度非常快,计算量比较小,而且对噪声有一定的鲁棒性,检测效果不错;基于颜色信息的背景建模方法,简称Color算法,该算法将像素点的差异分解成Chromaticity差异和Brightness差异,对光照具有很强的鲁棒性,并有比较好的效果,计算速度也比较快,基本可以满足实时性的要求,做了许多视频序列的检测,效果比较理想;统计平均法和中值滤波法,对于这两个算法,只对统计平均法做了实现,并进行了测试,算法的应用具有很大的局限性,只能算是理论上的一个补充;W4算法应该是最早被用于实际应用的一个算法,这个大家可以去查看相关的资料,这里不再细说;本征背景法没实现过,看很多文献有讲解,然后该算法又是基于贝叶斯框架;最后就是核密度估计算法,该算法应该是一个比较鲁棒的算法,可以解决很多算法参数设置方面的问题,无需设置参数应该是算法的一大优势。

个人观点:SOBS、Color、VIBE、SACON、PDF等可以进行深入的了解,特别是近年来出现的Block-based或Region-Based、Features-Based、基于层次分类或层次训练器的算法可以进行深入的研究。推荐一篇综述文章:Evaluation of Background Subtraction Techniques for Video Surveillance

再推荐一个网站:http://www.changedetection.net/

[参考文献或资料来源]

[1] http://cvchina.net/blog-423-161.html(貌似这个链接不可用了,作者请原谅啊Belial2010 

常见的目标检测中的背景建模方法

时间: 2024-10-22 16:14:12

常见的目标检测中的背景建模方法的相关文章

目标检测中背景建模方法

最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章.一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结.      背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved adaptive background m

深度卷积神经网络在目标检测中的进展

作者:travelsea链接:https://zhuanlan.zhihu.com/p/22045213来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高.回顾从2014到2016这两年多的时间,先后涌现出了R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD等越来越快速和准确的目标检测方法. 基于Reg

目标检测 1 : 目标检测中的Anchor详解

咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目标检测中,使用一个矩形的边框来表示.在图像中,可以基于图像坐标系使用多种方式来表示矩形框. 最直接的方式,使用矩形框的左上角和右下角在图像坐标系中的坐标来表示. 使用绝对坐标的\((x_{min},y_{min},x_{max},y_{max})\). 但是这种绝对坐标的表示方式,是以原始图像的像素

目标检测中的precision,recall,AP,mAP计算详解

交并比IoU衡量的是两个区域的重叠程度,是两个区域重叠部分面积占二者总面积(重叠部分只计算一次)的比例.如下图,两个矩形框的IoU是交叉面积(中间图片红色部分)与合并面积(右图红色部分)面积之比. Iou的定义 在目标检测任务中,如果我们模型输出的矩形框与我们人工标注的矩形框的IoU值大于某个阈值时(通常为0.5)即认为我们的模型输出了正确的 精准率与召回率(Precision & Recall) 大雁与飞机 假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示:  假

数据仓库建设中的数据建模方法(转)

简介: 本文的主要内容不是介绍现有的比较流行的主要行业的一些数据模型,而是将笔者在数据仓库建设项目中的一些经验,在这里分享给大家.希望帮助大家在数据仓库项目建设中总结出一套能够合乎目前业界规范的,满足大部分行业数据仓库建设标准的一种方法. 所谓水无定势,兵无常法.不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的.目前业界较为主流的是数据仓库厂商主要是 IBM 和 NCR,这两家公司的除了能够提供较为强大的数据仓库平台之外,也有各自的针对某个行业的数据模型. 例如,在

浅谈数据仓库建设中的数据建模方法

所谓水无定势,兵无常法.不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的.目前业界较为主流的是数据仓库厂商主要是 IBM 和 NCR,这两家公司的除了能够提供较为强大的数据仓库平台之外,也有各自的针对某个行业的数据模型.       例如,在银行业,IBM 有自己的 BDWM(Banking data warehouse model),而 NCR 有自己的 FS-LDM 模型.在电信业,IBM 有 TDWM(Telecom Data warehouse model)

目标检测中bounding box regression

https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-box regression) 得到精确的目标区域,由于实际目标会产生多个子区域,旨在对完成分类的前景目标进行精确的定位与合并,避免多个检出. fast rcnn中SoftmaxLoss代替了SVM,证明了softmax比SVM更好的效果,SmoothL1Loss取代Bouding box回归.将分类

数据挖掘、目标检测中的cnn和cn---卷积网络和卷积神经网络

content 概述 文字识别系统LeNet-5 简化的LeNet-5系统 卷积神经网络的实现问题 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列

目标检测中的IOU

IOU是指两个bounding box的重合程度. 其中矩形框A和B的IOU=A∩B/A∪B,实际运算是对应的面积比较. 原文地址:https://www.cnblogs.com/AntonioSu/p/12193743.html