图像处理——图像平滑

图像处理——图像平滑

分类: 图像处理2012-12-10 22:40 2714人阅读 评论(0) 收藏 举报

图像噪声是在图像处理中经常会遇到的问题,它的存在会使图像的质量下降,因此解决图像噪声问题在图像处理过程中是不可忽视的。

根据噪声的性质不同,消除噪声的方法也有所不同。

随机噪声是一种线索最少却最常见的噪声。

对于多帧图像,取其平均值,帧数越多越接近实际值。对于单帧图像,随机噪声隐藏的像素的实际灰度值是不可知的,此时,只能尽量使噪声对图像的影响最小化。噪声的灰度与周围像素的灰度之间有明显的灰度差,正是这些明显的灰度差造成了视觉上的障碍。一般情况下,把利用噪声的性质来消除图像中噪声的方法称为图像平滑(image smoothing)。

一、均值滤波器

均值滤波器(averaging filter)是消除噪声的最简单的方法。原理:使用某像素周围mxn像素范围内的平均值来置换该像素值。通过使图像模糊,达到看不到细小噪声的目的。不良反应:使用这种方法,在噪声被消除的同时,目标图像也变模糊了。

二、中值滤波

消除噪声最好的结果是,在消除噪声的同时,图像边缘完好的保留。中值滤波能够比较好的实现这一点。原理:查看mxn邻域内的像素灰度,按照从小到大的顺序进行排列,结果取中间值。

中值滤波器与均值滤波器比较的优势:在均值滤波器中,由于噪声成分被放入平均计算中,所以输出受到了噪声的影响,但是在中值滤波器中,由于噪声成分很难选上,所以几乎不会影响到输出。因此同样用3x3区域进行处理,中值滤波消除的噪声能力更胜一筹。中值滤波无论是在消除噪声还是保存边缘方面都是一个不错的方法。

中值滤波器与均值滤波器比较的劣势:中值滤波花费的时间是均值滤波的5倍以上。

二值图像的平滑

二值图像中的椒盐噪声能够用中值滤波来消除,但是由于它只有二值,也可以采用膨胀和腐蚀的处理方法来消除。膨胀(dilation)是指在某像素的邻域内,只要有一个像素是白色像素则该像素就由黑变为白,其他保持不变。腐蚀(erosion)只是某像素的邻域内,只要有一个像素是黑色像素则该像素由白变黑,其他保持不变。

3x3邻域

smooth  求9个像素的平均值

median  求9个像素的中间值

erodible  9个像素中若有至少一个为黑,该像素为黑

dilation  9个像素若有至少一个为白,该像素为白

图像处理——图像平滑

时间: 2024-10-02 07:07:10

图像处理——图像平滑的相关文章

OpenCV图像处理篇之图像平滑

图像平滑算法 图像平滑与图像模糊是同一概念,主要用于图像的去噪.平滑要使用滤波器,为不改变图像的相位信息,一般使用线性滤波器,其统一形式如下: 其中h称为滤波器的核函数,说白了就是权值.不同的核函数代表不同的滤波器,有不同的用途. 在图像处理中,常见的滤波器包括: 归一化滤波器(Homogeneous blur) 也是均值滤波器,用输出像素点核窗口内的像素均值代替输出点像素值. 高斯滤波器(Guassian blur) 是实际中最常用的滤波器,高斯滤波是将输入数组的每一个像素点与 高斯内核 卷积

图像处理与matlab实例之图像平滑(一)

一.何为图像噪声?噪声是妨碍人的感觉器官所接受信源信息理解的因素,是不可预测只能用概率统计方法认识的随机误差. 举个例子: 从这个图中,我们可以观察到噪声的特点:1>位置随机 2>大小不规则.我们将这种噪声称为随机噪声(random noise),这是一种非常常见的噪声类型. 二.噪声的类型 噪声可以借用随机过程以及概率密度函数(Probability Density Function,PDF)来描述,通常可采用其数组特征,即均值,方差,相关函数等.按照概率密度函数分为高斯噪声.瑞利噪声.伽马

图像处理之基础---卷积去噪

讨论如何使用卷积作为数学工具来处理图像,实现图像的滤波,其方法包含以下几种,均值 滤波,中值滤波,最大最小值滤波,关于什么是卷积以及理解卷积在图像处理中作用参见这 里–http://blog.csdn.net/jia20003/article/details/7038938 均值滤波: 均值滤波,是图像处理中最常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高 频信号将会去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能.理想的均 值滤波是用每个像素和它周围像素计算出来的平均值替

图像处理之基础---滤波器 高斯滤波

引用 keendawn 的 高斯(核)函数简介 1函数的基本概念 所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数. 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小.最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数 ,

OpenCV 之 图像平滑

OpenCV 之 图像平滑 1  图像平滑 图像平滑,可用来对图像进行去噪 (noise reduction) 或 模糊化处理 (blurring),实际上图像平滑仍然属于图像空间滤波的一种 (低通滤波) 既然是滤波,则图像中任一点 (x, y),经过平滑滤波后的输出 g(x, y) 如下: g(x,y)=∑s=−aa∑t=−bbw(s,t)f(x+s,y+t)g(x,y)=∑s=−aa∑t=−bbw(s,t)f(x+s,y+t) 以 3X3 的滤波器为例 (即 a=b=1),则矩阵 Mx 和

图像处理之基础---卷积,滤波,平滑

/*今天师弟来问我,CV的书里到处都是卷积,滤波,平滑……这些概念到底是什么意思,有什么区别和联系,瞬间晕菜了,学了这么久CV,卷积,滤波,平滑……这些概念每天都念叨好几遍,可是心里也就只明白个大概的意思,赶紧google之~ 发现自己以前了解的真的很不全面,在此做一些总结,以后对这种基本概念要深刻学习了~*/ 1.图像卷积(模板) (1).使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算. 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)

Atitit   图像处理 平滑 也称 模糊, 归一化块滤波、高斯滤波、中值滤波、双边滤波)

Atitit   图像处理 平滑 也称 模糊, 归一化块滤波.高斯滤波.中值滤波.双边滤波) 是一项简单且使用频率很高的图像处理方法 用途 去噪 去雾 各种线性滤波器对图像进行平滑处理,相关OpenCV函数如下: 归一化块滤波器 (Normalized Box Filter) § 最简单的滤波器, 输出像素值是核窗口内像素值的 均值 ( 所有像素加权系数相等) § 高斯滤波器 (Gaussian Filter) § 最有用的滤波器 (尽管不是最快的). 高斯滤波是将输入数组的每一个像素点与 高斯

图像处理的一些概

图像处理的基本方法有:图像变换.图像平滑.图像增强.图像分割和图像特征提取等    图像变换就是将图像在空间域的处理转换为变换域的处理.因为图像阵列大,如果直接在空间域进行处理,运算量将会非常大,而采用图像变换,如沃尔什变换.傅里叶变换.离散余弦变换等进行处理,则不仅能大大减少计算量,还能得到更加有效的处理.图像平滑技术是抑制图像噪声的一种有效方式,使用合适的图像平滑方法可以有效地消除图像在捕捉和传输过程中产生的噪声.常见的图像平滑方法有均值滤波.中值滤波.低通滤波.小波滤波以及由多种方法综合而

图像处理基本概念——卷积,滤波,平滑(转载)

/*今天师弟来问我,CV的书里到处都是卷积,滤波,平滑--这些概念到底是什么意思,有什么区别和联系,瞬间晕菜了,学了这么久CV,卷积,滤波,平滑--这些概念每天都念叨好几遍,可是心里也就只明白个大概的意思,赶紧google之~ 发现自己以前了解的真的很不全面,在此做一些总结,以后对这种基本概念要深刻学习了~*/ 1.图像卷积(模板) (1).使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算. 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)