bzoj2286

虚树+树形dp

虚树一类问题是指多次询问,每次询问的点数较少,如果我们每次都对整棵树进行遍历,那么自然是不行的,这时我们就构造出一棵虚树来降低复杂度

具体构建就是把一些无用的点缩起来。我们考虑对于一个点包括自己和这个点的子树,我们怎么构建虚树。

我们把所有点按dfs序排序,也就是模拟出dfs的过程,然后用一个栈维护。

每次加入新点x,我们求出和栈顶y的lca,t,如果dfn[t]>=dfn[y],那么说明x在y的下面,那么直接入栈就行了,否则就不在同一条子树的链中,这时我们就要像dfs一样退栈,这时要注意

黑点是需要构建的点,当我们加入4号点时,栈里有1,3,4,加入5的时候,我们发现需要退栈,我们先弹掉4,把3->4连边,然后就需要注意,我们不能把1->3,而需要把2->3,于是我们判断dfn[lca]和dfn[st[top-1]]的大小关系来决定如何连边,再把3弹掉,然后如果栈顶不是lca,那么就把lca=2加入栈里,继续进行这个过程

最后就是树形dp了

其实虚树的构建很像dfs的过程

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;
const int N = 250010;
struct edge {
    int nxt, to;
    long long w;
} e[N << 1];
int n, m, cnt = 1, tot, top;
int head[N], dfn[N], dep[N], fa[N], Top[N], size[N], a[N], st[N], mark[N], son[N];
long long val[N];
vector<int> G[N];
namespace IO
{
    const int Maxlen = N * 50;
    char buf[Maxlen], *C = buf;
    int Len;
    inline void read_in()
    {
        Len = fread(C, 1, Maxlen, stdin);
        buf[Len] = ‘\0‘;
    }
    inline void fread(int &x)
    {
        x = 0;
        int f = 1;
        while (*C < ‘0‘ || ‘9‘ < *C) { if(*C == ‘-‘) f = -1; ++C; }
        while (‘0‘ <= *C && *C <= ‘9‘) x = (x << 1) + (x << 3) + *C - ‘0‘, ++C;
        x *= f;
    }
    inline void fread(long long &x)
    {
        x = 0;
        long long f = 1;
        while (*C < ‘0‘ || ‘9‘ < *C) { if(*C == ‘-‘) f = -1ll; ++C; }
        while (‘0‘ <= *C && *C <= ‘9‘) x = (x << 1ll) + (x << 3ll) + *C - ‘0‘, ++C;
        x *= f;
    }
    inline void read(int &x)
    {
        x = 0;
        int f = 1; char c = getchar();
        while(c < ‘0‘ || c > ‘9‘) { if(c == ‘-‘) f = -1; c = getchar(); }
        while(c >= ‘0‘ && c <= ‘9‘) { x = (x << 1) + (x << 3) + c - ‘0‘; c = getchar(); }
        x *= f;
    }
    inline void read(long long &x)
    {
        x = 0;
        long long f = 1; char c = getchar();
        while(c < ‘0‘ || c > ‘9‘) { if(c == ‘-‘) f = -1; c = getchar(); }
        while(c >= ‘0‘ && c <= ‘9‘) { x = (x << 1ll) + (x << 3ll) + c - ‘0‘; c = getchar(); }
        x *= f;
    }
} using namespace IO;
int lca(int u, int v)
{
    while(Top[u] != Top[v])
    {
        if(dep[Top[u]] < dep[Top[v]]) swap(u, v);
        u = fa[Top[u]];
    }
    return dep[u] < dep[v] ? u : v;
}
void dfs(int u, int last)
{
    size[u] = 1;
    for(int i = head[u]; i; i = e[i].nxt) if(e[i].to != last)
    {
        dep[e[i].to] = dep[u] + 1;
        fa[e[i].to] = u;
        val[e[i].to] = min(val[u], e[i].w);
        dfs(e[i].to, u);
        size[u] += size[e[i].to];
        if(size[e[i].to] > size[son[u]]) son[u] = e[i].to;
    }
}
void dfs(int u, int acs, int last)
{
    dfn[u] = ++tot;
    Top[u] = acs;
    if(son[u]) dfs(son[u], acs, u);
    for(int i = head[u]; i; i = e[i].nxt) if(e[i].to != last && e[i].to != son[u]) dfs(e[i].to, e[i].to, u);
}
void link(int u, int v, long long w)
{
    e[++cnt].nxt = head[u];
    head[u] = cnt;
    e[cnt].to = v;
    e[cnt].w = w;
}
bool cp(int i, int j) { return dfn[i] < dfn[j]; }
long long dfs(int u)
{
    long long ret = 0;
    for(int i = 0; i < G[u].size(); ++i)
    {
        int v = G[u][i];
        ret += dfs(v);
    }
    G[u].clear();
    if(mark[u]) return val[u];
    else return min(ret, val[u]);
}
void solve()
{
    fread(n);
    for(int i = 1; i <= n; ++i) fread(a[i]), mark[a[i]] = 1;
    sort(a + 1, a + n + 1, cp);
    top = 0;
    st[++top] = 1;
    for(int i = 1; i <= n; ++i)
    {
        int grand = lca(a[i], st[top]);
        while(dfn[grand] < dfn[st[top - 1]] && top > 1) G[st[top - 1]].push_back(st[top]), --top;
        if(dfn[st[top]] > dfn[grand]) G[grand].push_back(st[top]), --top;
        if(st[top] != grand) st[++ top] = grand;
        st[++ top] = a[i];
    }
    for(int i = top; i > 1; --i) G[st[i - 1]].push_back(st[i]);
    printf("%lld\n", dfs(st[1]));
    for(int i = 1; i <= n; ++i) mark[a[i]] = 0;
}
int main()
{
    read_in();
    fread(n);
    for(int i = 1; i < n; ++i)
    {
        int u, v;
        long long w;
        fread(u);
        fread(v);
        fread(w);
        link(u, v, w);
        link(v, u, w);
    }
    val[1] = 1ll << 60;
    dfs(1, 0);
    dfs(1, 1, 0);
    fread(m);
    while(m --) solve();
    return 0;
}

时间: 2024-09-28 19:21:15

bzoj2286的相关文章

【BZOJ2286】消耗战(虚树,DFS序,树形DP)

题意:一棵N个点的树上有若干个关键点,每条边有一个边权,现在要将这些关键点到1的路径全部切断,切断一条边的代价就是边权. 共有M组询问,每组询问有k[i]个关键点,对于每组询问求出完成任务的最小代价. 对于100%的数据,2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1 思路:第一题虚树,需要详细地记录一下. 对于此题,朴素的树形DP很好理解: dp[u]为将u子树中的关键点全部切断的最小代价 dp[u]=min(cut[u]

【bzoj2286】 消耗战

http://www.lydsy.com/JudgeOnline/problem.php?id=2286 (题目链接) 一个小小的细节,WA了一天,欲哭无泪了.. 题意:给出一个n个节点的带权树,总共m次询问,每次询问给出K个节点标号,求出切断这些节点与1号节点的路径的最少花费. solution  构造虚数+树形dp.  首先,有关虚树的题有一个特征,就是题目会给出sigema(k[i])的范围,保证不会太大.所以我们考虑对于每一次询问构造一棵虚树,然后再在虚树上跑dp,可以大大减少复杂度,比

【BZOJ2286】[Sdoi2011]消耗战 虚树

[BZOJ2286][Sdoi2011]消耗战 Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿.由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小. 侦查部门还发现,敌军有

Bzoj2286 [Sdoi2011消耗战

Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3003  Solved: 1081 Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿.由于不同桥梁的材质和结构不同,所以炸毁不

BZOJ2286 [Sdoi2011]消耗战

Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证 每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他 k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿.由于不同桥梁的材质和结构不同,所以炸毁 不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小. 侦查部门还发现,敌军有一台神秘机器.即使我军切断所有能源之后,他

[SDOI2011][BZOJ2286] 消耗战|虚树|树型dp|树上倍增LCA

2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1040  Solved: 363[Submit][Status][Discuss] Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸

[bzoj2286][Sdoi2011]消耗战(虚树上的DP)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2286 分析:对于普通的树形dp:f[x]=min(∑f[son],m[x]),其中f[x]表示以x为根的子树所有关键点全部断开所需要的最少代价,m[x]表示从根节点到x节点的路径上最短的边 这样的话复杂度是n*m的,明显TLE 注意到数据范围里提到,所有询问的总的点数<=n,也就是说询问虽然很多,但每次询问的点的个数不多,也就是说如果对所有的点做树形dp就很不值得 于是我们就要取出那

【BZOJ-2286】消耗战 虚树 + 树形DP

2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2120  Solved: 752[Submit][Status][Discuss] Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁

bzoj2286 消耗战

还是虚树的题目啊... 如果只有一个询问,我们这么考虑,可以设dp[x]为只删除x子树内和x到父亲的边,使得x这棵子树内的能源岛屿都与x的父亲不连通的最小花费. 这样如果x本身是能源岛屿,那么dp[x]=fe[x],否则dp[x]=min(fe[x],sum{dp[son[x]]})类似这样.(fe表示父亲边,fe[1]=inf) 那么有了多组询问我们就在虚树上搞这个,需要注意的是虚树上的一条父子边就对应着原树上一条父子链,而权值就是那个父子链的最小值.可以用倍增一起维护掉. 需要注意的是...