Description
A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n <= 16))
-->
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements.
You are to write a program that completes above process.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int is_prime(int n) { for(int k= 2; k*k <= n; k++) if(n% k== 0) return 0; return 1; } int n, A[50], isp[50], vis[50]; void dfs(int cur) { if(cur == n && isp[A[0]+A[n-1]]) { for(int i = 0; i < n; i++) { if(i != 0) printf(" "); printf("%d", A[i]); } printf("\n"); } else for(int i = 2; i <= n; i++) if(!vis[i] && isp[i+A[cur-1]]) { A[cur] = i; vis[i] = 1; dfs(cur+1); vis[i] = 0; } } int main() { int kase = 0; while(scanf("%d", &n) == 1 && n > 0) { if(kase > 0) printf("\n"); printf("Case %d:\n", ++kase); for(int i = 2; i <= n*2; i++) isp[i] = is_prime(i); memset(vis, 0, sizeof(vis)); A[0] = 1; dfs(1); } return 0; }
时间: 2024-10-13 01:04:08