C# 线程(五):线程池

Fromhttp://kb.cnblogs.com/page/42531/

在多线程的程序中,经常会出现两种情况:

一种情况: 应用程序中,线程把大部分的时间花费在等待状态,等待某个事件发生,然后才能给予响应

这一般使用ThreadPool(线程池)来解决;

另一种情况:线程平时都处于休眠状态,只是周期性地被唤醒

这一般使用Timer(定时器)来解决;

ThreadPool类提供一个由系统维护的线程池(可以看作一个线程的容器),该容器需要 Windows 2000 以上系统支持,因为其中某些方法调用了只有高版本的Windows才有的API函数。

将线程安放在线程池里,需使用ThreadPool.QueueUserWorkItem()方法,该方法的原型如下:

//将一个线程放进线程池,该线程的Start()方法将调用WaitCallback代理对象代表的函数

public static bool QueueUserWorkItem(WaitCallback);

//重载的方法如下,参数object将传递给WaitCallback所代表的方法

public static bool QueueUserWorkItem(WaitCallback, object);

ThreadPool类是一个静态类,你不能也不必要生成它的对象。而且一旦使用该方法在线程池中添加了一个项目,那么该项目将是无法取消的。

在这里你无需自己建立线程,只需把你要做的工作写成函数,然后作为参数传递给ThreadPool.QueueUserWorkItem()方法就行了,传递的方法就是依靠WaitCallback代理对象,而线程的建立、管理、运行等工作都是由系统自动完成的,你无须考虑那些复杂的细节问题。

ThreadPool 的用法:

首先程序创建了一个ManualResetEvent对象,该对象就像一个信号灯,可以利用它的信号来通知其它线程。

本例中,当线程池中所有线程工作都完成以后,ManualResetEvent对象将被设置为有信号,从而通知主线程继续运行。

ManualResetEvent对象有几个重要的方法:

初始化该对象时,用户可以指定其默认的状态(有信号/无信号);

在初始化以后,该对象将保持原来的状态不变,直到它的Reset()或者Set()方法被调用:

Reset()方法:将其设置为无信号状态;

Set()方法:将其设置为有信号状态。

WaitOne()方法:使当前线程挂起,直到ManualResetEvent对象处于有信号状态,此时该线程将被激活。然后,程序将向线程池中添加工作项,这些以函数形式提供的工作项被系统用来初始化自动建立的线程。当所有的线程都运行完了以后,ManualResetEvent.Set()方法被调用,因为调用了ManualResetEvent.WaitOne()方法而处在等待状态的主线程将接收到这个信号,于是它接着往下执行,完成后边的工作。

ThreadPool 的用法示例:

using System;
using System.Collections;
using System.Threading;

namespace ThreadExample
{
    //这是用来保存信息的数据结构,将作为参数被传递
    public class SomeState
    {
      public int Cookie;
      public SomeState(int iCookie)
      {
        Cookie = iCookie;
      }
    }

    public class Alpha
    {
  public Hashtable HashCount;
  public ManualResetEvent eventX;
  public static int iCount = 0;
  public static int iMaxCount = 0;
  
        public Alpha(int MaxCount)
  {
         HashCount = new Hashtable(MaxCount);
         iMaxCount = MaxCount;
  }

  //线程池里的线程将调用Beta()方法
  public void Beta(Object state)
  {
      //输出当前线程的hash编码值和Cookie的值
         Console.WriteLine(" {0} {1} :", Thread.CurrentThread.GetHashCode(),((SomeState)state).Cookie);
      Console.WriteLine("HashCount.Count=={0}, Thread.CurrentThread.GetHashCode()=={1}", HashCount.Count, Thread.CurrentThread.GetHashCode());
      lock (HashCount)
      {
        //如果当前的Hash表中没有当前线程的Hash值,则添加之
        if (!HashCount.ContainsKey(Thread.CurrentThread.GetHashCode()))
             HashCount.Add (Thread.CurrentThread.GetHashCode(), 0);
         HashCount[Thread.CurrentThread.GetHashCode()] =
            ((int)HashCount[Thread.CurrentThread.GetHashCode()])+1;
      }
          int iX = 2000;
          Thread.Sleep(iX);
          //Interlocked.Increment()操作是一个原子操作,具体请看下面说明
          Interlocked.Increment(ref iCount);

          if (iCount == iMaxCount)
          {
          Console.WriteLine();
        Console.WriteLine("Setting eventX ");
        eventX.Set();
        }
    }
  }

        public class SimplePool
        {
            public static int Main(string[] args)
            {
                Console.WriteLine("Thread Pool Sample:");
                bool W2K = false;
                int MaxCount = 10;//允许线程池中运行最多10个线程
                //新建ManualResetEvent对象并且初始化为无信号状态
                ManualResetEvent eventX = new ManualResetEvent(false);
                Console.WriteLine("Queuing {0} items to Thread Pool", MaxCount);
                Alpha oAlpha = new Alpha(MaxCount);
                //创建工作项
                //注意初始化oAlpha对象的eventX属性
                oAlpha.eventX = eventX;
                Console.WriteLine("Queue to Thread Pool 0");
                try
                {
                    //将工作项装入线程池
                    //这里要用到Windows 2000以上版本才有的API,所以可能出现NotSupportException异常
                    ThreadPool.QueueUserWorkItem(new WaitCallback(oAlpha.Beta), new SomeState(0));
                    W2K = true;
                }
                catch (NotSupportedException)
                {
                    Console.WriteLine("These API‘s may fail when called on a non-Windows 2000 system.");
                    W2K = false;
                }
                if (W2K)//如果当前系统支持ThreadPool的方法.
                {
                    for (int iItem=1;iItem < MaxCount;iItem++)
                    {
                        //插入队列元素
                        Console.WriteLine("Queue to Thread Pool {0}", iItem);
                        ThreadPool.QueueUserWorkItem(new WaitCallback(oAlpha.Beta), new SomeState(iItem));
                    }
                    Console.WriteLine("Waiting for Thread Pool to drain");
                    //等待事件的完成,即线程调用ManualResetEvent.Set()方法
                    eventX.WaitOne(Timeout.Infinite,true);
                    //WaitOne()方法使调用它的线程等待直到eventX.Set()方法被调用
                    Console.WriteLine("Thread Pool has been drained (Event fired)");
                    Console.WriteLine();
                    Console.WriteLine("Load across threads");
                    foreach(object o in oAlpha.HashCount.Keys)
                        Console.WriteLine("{0} {1}", o, oAlpha.HashCount[o]);
                }
                Console.ReadLine();
                return 0;
            }
        }
    }
}

程序中应该引起注意的地方:

SomeState类是一个保存信息的数据结构,它在程序中作为参数被传递给每一个线程,因为你需要把一些有用的信息封装起来提供给线程,而这种方式是非常有效的。

程序出现的InterLocked类也是专为多线程程序而存在的,它提供了一些有用的原子操作。

原子操作:就是在多线程程序中,如果这个线程调用这个操作修改一个变量,那么其他线程就不能修改这个变量了,这跟lock关键字在本质上是一样的。

输出结果:

Thread Pool Sample:
Queuing 10 items to Thread Pool
Queue to Thread Pool 0
Queue to Thread Pool 1
Queue to Thread Pool 2
Queue to Thread Pool 3
Queue to Thread Pool 4
Queue to Thread Pool 5
 2 0 :
HashCount.Count==0, Thread.CurrentThread.GetHashCode()==2
Queue to Thread Pool 6
Queue to Thread Pool 7
Queue to Thread Pool 8
Queue to Thread Pool 9
Waiting for Thread Pool to drain
 4 1 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==4
 6 2 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==6
 7 3 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==7
 2 4 :
HashCount.Count==1, Thread.CurrentThread.GetHashCode()==2
 8 5 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==8
 9 6 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==9
 10 7 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==10
 11 8 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==11
 4 9 :
HashCount.Count==2, Thread.CurrentThread.GetHashCode()==4

Setting eventX
Thread Pool has been drained (Event fired)

Load across threads
11 1
10 1
9 1
8 1
7 1
6 1
4 2
2 2

我们应该彻底地分析上面的程序,把握住线程池的本质,理解它存在的意义是什么,这样才能得心应手地使用它。

------------------>>>

C# 线程(五):线程池

时间: 2024-09-29 19:38:15

C# 线程(五):线程池的相关文章

Java线程及线程池状态

一.Java线程的六种状态 如上图1,JDK定义线程状态是不存在“运行中”状态,但为方便描述过程有些图中会画出运行中的状态. Java线程创建后调用start方法进入就绪状态,被OS调度选中后运行,运行结束或程序退出或抛异常时终止. 运行中线程调用Thread.yield()方法状态切换为可运行就绪状态:运行中线程执行时遇到IO阻塞.调用Thread.sleep或其它线程对象join()方法时进入阻塞等待状态:运行中线程遇到同步锁方法时进入锁池等待状态. 线程从阻塞状态.锁池状态.新建状态.运行

Python程序中的线程操作(线程池)-concurrent模块

目录 Python程序中的线程操作(线程池)-concurrent模块 一.Python标准模块--concurrent.futures 二.介绍 三.基本方法 四.ProcessPoolExecutor 五.ThreadPoolExecutor 六.map的用法 七.回调函数 Python程序中的线程操作(线程池)-concurrent模块 一.Python标准模块--concurrent.futures 官方文档:https://docs.python.org/dev/library/con

java线程五种状态

java线程五种状态: 创建 -> 就绪 -> 运行 -> 销毁 创建 -> 就绪 -> 运行 -> 等待(缺少资源) -> 销毁 下图:各种状态转换

InnoDB 存储引擎的线程与内存池

InnoDB 存储引擎的线程与内存池 InnoDB体系结构如下: 后台线程: 1.后台线程的主要作用是负责刷新内存池中的数据,保证缓冲池中的内存缓存的是最近的数据: 2.另外,将以修改的数据文件刷新到磁盘文件: 3.同时,保证在数据库发生异常的情况下,InnoDB能恢复到正常运行状态. 内存池:InnoDB有多个内存块,这些内存块组成了一个大的内存池.这些内存块包括有:缓冲池(innodb_buffer_pool)和日志缓冲(log_buffer)以及额外内存池(innodb_addtional

线程和线程池

首先线程有守护线程和用户线程两种,区别就是用户线程是否保持程序的运行状态.当程序在运行时,必定有一个或以上的线程是用户线程,而当程序结束时,所有守护线程也都将被关闭.使用Thread.setDaemon(ture)可以把线程标记为守护线程,默认线程状态继承自创建它的线程.线程的两种创建方法不多说了. 线程安全一般指的是共享变量被多个线程访问读写造成的数据不一致或者是数据不完整性.一般有如下几种方法可供参考: 1.synchronized方法,提供只能供一个线程访问的类,方法或语句块,控制变量的修

java 线程、线程池基本应用示例代码回顾

package org.rui.thread; /** * 定义任务 * * @author lenovo * */ public class LiftOff implements Runnable { protected int countDown=10; private static int taskCount=0; private final int id=taskCount++; public LiftOff(){} public LiftOff(int countDown) { thi

Android的线程和线程池

原文链接,转载请注明出处 http://sparkyuan.me/2016/03/25/Android的线程和线程池/ 在Java中默认情况下一个进程只有一个线程,也就是主线程,其他线程都是子线程,也叫工作线程.Android中的主线程主要处理和界面相关的事情,而子线程则往往用于执行耗时操作.线程的创建和销毁的开销较大,所以如果一个进程要频繁地创建和销毁线程的话,都会采用线程池的方式. Android中线程的形态 传统的Thread AsyncTask HandlerThread IntentS

线程系列04,传递数据给线程,线程命名,线程异常处理,线程池

本篇体验:如何传递数据给线程,如何给线程命名,线程的异常处理,线程池.实在是太基础的部分. □ 传递数据给线程 ※ 使用Lambda表达式 class Program { static void Main(string[] args) { Thread t = new Thread(() => Say("hello", "world")); t.Start(); } static void Say(string msg, string msg1) { Cons

线程与线程池,实例比较。

线程池: int count = 200000; long startTime = System.currentTimeMillis(); final List<Integer> l = new LinkedList<Integer>(); ThreadPoolExecutor tp = new ThreadPoolExecutor(1, 1, 60, TimeUnit.SECONDS, new LinkedBlockingDeque<Runnable>(count))

java 线程、线程池基本应用演示样例代码回想

package org.rui.thread; /** * 定义任务 * * @author lenovo * */ public class LiftOff implements Runnable { protected int countDown=10; private static int taskCount=0; private final int id=taskCount++; public LiftOff(){} public LiftOff(int countDown) { thi