Spark技术内幕:Shuffle Map Task运算结果的处理

Shuffle Map Task运算结果的处理

这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的;还有就是Driver端,如果在接到Task运行结束的消息时,如何对Shuffle Write的结果进行处理,从而在调度下游的Task时,下游的Task可以得到其需要的数据。

Executor端的处理

在解析BasicShuffle Writer时,我们知道ShuffleMap Task在Executor上运行时,最终会调用org.apache.spark.scheduler.ShuffleMapTask的runTask:

 override def runTask(context: TaskContext): MapStatus = {
   // 反序列化广播变量taskBinary得到RDD
   val ser = SparkEnv.get.closureSerializer.newInstance()
   val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
     ByteBuffer.wrap(taskBinary.value),Thread.currentThread.getContextClassLoader)
//省略一些非核心代码
val manager =SparkEnv.get.shuffleManager //获得Shuffle Manager
    //获得Shuffle Writer
    writer= manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
//首先调用rdd .iterator,如果该RDD已经cache了或者checkpoint了,那么直接读取
//结果,否则开始计算计算的结果将调用Shuffle Writer写入本地文件系统
writer.write(rdd.iterator(partition,context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
// 返回数据的元数据信息,包括location和size
returnwriter.stop(success = true).get

那么这个结果最终是如何处理的呢?特别是下游的Task如何获取这些Shuffle的数据呢?还要从Task是如何开始执行开始讲起。在Worker上接收Task执行命令的是org.apache.spark.executor.CoarseGrainedExecutorBackend。它在接收到LaunchTask的命令后,通过在Driver创建SparkContext时已经创建的org.apache.spark.executor.Executor的实例的launchTask,启动Task:

 def launchTask(
     context:ExecutorBackend, taskId: Long, taskName: String,serializedTask: ByteBuffer) {
   val tr = newTaskRunner(context, taskId, taskName, serializedTask)
  runningTasks.put(taskId, tr)
  threadPool.execute(tr) // 开始在executor中运行
  }

最终Task的执行是在org.apache.spark.executor.Executor.TaskRunner#run。

在Executor运行Task时,得到计算结果会存入org.apache.spark.scheduler.DirectTaskResult。

//开始执行Task,最终得到的是org.apache.spark.scheduler.ShuffleMapTask#runTask
//返回的org.apache.spark.scheduler.MapStatus
val value = task.run(taskId.toInt)
val resultSer = env.serializer.newInstance() //获得序列化工具
val valueBytes = resultSer.serialize(value) //序列化结果
//首先将结果直接放入org.apache.spark.scheduler.DirectTaskResult
val directResult = new DirectTaskResult(valueBytes,accumUpdates, task.metrics.orNull)
val ser = env.closureSerializer.newInstance()
val serializedDirectResult = ser.serialize(directResult)//序列化结果
val resultSize = serializedDirectResult.limit //序列化结果的大小

在将结果回传到Driver时,会根据结果的大小有不同的策略:

1)       如果结果大于1GB,那么直接丢弃这个结果。这个是Spark1.2中新加的策略。可以通过spark.driver.maxResultSize来进行设置。

2)       对于“较大”的结果,将其以taskid为key存入org.apache.spark.storage.BlockManager;如果结果不大,那么直接回传给Driver。那么如何判定这个阈值呢?

这里的回传是直接通过akka的消息传递机制。因此这个大小首先不能超过这个机制设置的消息的最大值。这个最大值是通过spark.akka.frameSize设置的,单位是MBytes,默认值是10MB。除此之外,还有200KB的预留空间。因此这个阈值就是conf.getInt("spark.akka.frameSize",10) * 1024 *1024 – 200*1024。

3)       其他的直接通过AKKA回传到Driver。

实现源码解析如下:

     val serializedResult = {
          if (maxResultSize > 0 &&resultSize > maxResultSize) {
// 如果结果的大小大于1GB,那么直接丢弃,
// 可以在spark.driver.maxResultSize设置
ser.serialize(newIndirectTaskResult[Any](TaskResultBlockId(taskId),
    resultSize))
          } else if (resultSize >=akkaFrameSize - AkkaUtils.reservedSizeBytes) {
// 如果不能通过AKKA的消息传递,那么放入BlockManager
// 等待调用者以网络的形式来获取。AKKA的消息的默认大小可以通过
//  spark.akka.frameSize来设置,默认10MB。
            val blockId =TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId, serializedDirectResult,StorageLevel.MEMORY_AND_DISK_SER)
            ser.serialize(newIndirectTaskResult[Any](blockId, resultSize))
          } else {
            //结果可以直接回传到Driver
            serializedDirectResult
          }
        }
        // 通过AKKA向Driver汇报本次Task的已经完成
        execBackend.statusUpdate(taskId,TaskState.FINISHED, serializedResult)

而execBackend是org.apache.spark.executor.ExecutorBackend的一个实例,它实际上是Executor与Driver通信的接口:

private[spark] trait ExecutorBackend {
  def statusUpdate(taskId:Long, state: TaskState, data: ByteBuffer)
}

TaskRunner会将Task执行的状态汇报给Driver(org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor)。 而Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。

Driver的处理

TaskRunner将Task的执行状态汇报给Driver后,Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。而在这里不同的状态有不同的处理:

1)       如果类型是TaskState.FINISHED,那么调用org.apache.spark.scheduler.TaskResultGetter#enqueueSuccessfulTask进行处理。

2)       如果类型是TaskState.FAILED或者TaskState.KILLED或者TaskState.LOST,调用org.apache.spark.scheduler.TaskResultGetter#enqueueFailedTask进行处理。对于TaskState.LOST,还需要将其所在的Executor标记为failed,并且根据更新后的Executor重新调度。

enqueueSuccessfulTask的逻辑也比较简单,就是如果是IndirectTaskResult,那么需要通过blockid来获取结果:sparkEnv.blockManager.getRemoteBytes(blockId);如果是DirectTaskResult,那么结果就无需远程获取了。然后调用

1)       org.apache.spark.scheduler.TaskSchedulerImpl#handleSuccessfulTask

2)       org.apache.spark.scheduler.TaskSetManager#handleSuccessfulTask

3)       org.apache.spark.scheduler.DAGScheduler#taskEnded

4)       org.apache.spark.scheduler.DAGScheduler#eventProcessActor

5)       org.apache.spark.scheduler.DAGScheduler#handleTaskCompletion

进行处理。核心逻辑都在第5个调用栈。

如果task是ShuffleMapTask,那么它需要将结果通过某种机制告诉下游的Stage,以便于其可以作为下游Stage的输入。这个机制是怎么实现的?

实际上,对于ShuffleMapTask来说,其结果实际上是org.apache.spark.scheduler.MapStatus;其序列化后存入了DirectTaskResult或者IndirectTaskResult中。而DAGScheduler#handleTaskCompletion通过下面的方式来获取这个结果:

val status=event.result.asInstanceOf[MapStatus]

通过将这个status注册到org.apache.spark.MapOutputTrackerMaster,就完成了结果处理的漫长过程:

    mapOutputTracker.registerMapOutputs(
                 stage.shuffleDep.get.shuffleId,
                  stage.outputLocs.map(list=> if (list.isEmpty) null else list.head).toArray,
                  changeEpoch = true)

而registerMapOutputs的处理也很简单,以Shuffle ID为key将MapStatus的列表存入带有时间戳的HashMap:TimeStampedHashMap[Int, Array[MapStatus]]()。如果设置了cleanup的函数,那么这个HashMap会将超过一定时间(TTL,Time to Live)的数据清理掉。

时间: 2024-08-08 23:58:05

Spark技术内幕:Shuffle Map Task运算结果的处理的相关文章

Spark技术内幕: Shuffle详解(三)

前两篇文章写了Shuffle Read的一些实现细节.但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的:本篇开始,将按照Job的执行顺序,来讲解Shuffle.即,结果数据(ShuffleMapTask的结果和ResultTask的结果)是如何产生的:结果是如何处理的:结果是如何读取的. 在Worker上接收Task执行命令的是org.apache.spark.executor.CoarseGrainedExecutorBackend.它在接收到LaunchTask的命令后,通过在Driv

Spark技术内幕:Sort Based Shuffle实现解析

在Spark 1.2.0中,Spark Core的一个重要的升级就是将默认的Hash Based Shuffle换成了Sort Based Shuffle,即spark.shuffle.manager 从hash换成了sort,对应的实现类分别是org.apache.spark.shuffle.hash.HashShuffleManager和org.apache.spark.shuffle.sort.SortShuffleManager. 这个方式的选择是在org.apache.spark.Sp

Spark技术内幕: Task向Executor提交的源代码解析

在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓扑,即须要依照顺序计算的Stage,Stage中包括了能够以partition为单位并行计算的Task.我们并没有分析Stage中得Task是怎样生成而且终于提交到Executor中去的. 这就是本文的主题. 从org.apache.spark.scheduler.DAGScheduler#submitMis

Spark技术内幕:Shuffle的性能调优

通过上面的架构和源码实现的分析,不难得出Shuffle是Spark Core比较复杂的模块的结论.它也是非常影响性能的操作之一.因此,在这里整理了会影响Shuffle性能的各项配置.尽管大部分的配置项在前文已经解释过它的含义,由于这些参数的确是非常重要,这里算是做一个详细的总结. 1.1.1  spark.shuffle.manager 前文也多次提到过,Spark1.2.0官方支持两种方式的Shuffle,即Hash Based Shuffle和Sort Based Shuffle.其中在Sp

Spark技术内幕:Spark Pluggable框架详解,你怎么开发自己的Shuffle Service?

首先介绍一下需要实现的接口.框架的类图如图所示(今天CSDN抽风,竟然上传不了图片.如果需要实现新的Shuffle机制,那么需要实现这些接口. 1.1.1  org.apache.spark.shuffle.ShuffleManager Driver和每个Executor都会持有一个ShuffleManager,这个ShuffleManager可以通过配置项spark.shuffle.manager指定,并且由SparkEnv创建.Driver中的ShuffleManager负责注册Shuffl

Spark技术内幕:Client,Master和Worker 通信源码解析

Spark的Cluster Manager可以有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义的SparkContext向APP Master提交,有APP Master进行计算资源的调度并最终完成计算.具体阐述可以阅读<Spark:大数据的电花火石!>. 那么Standalone模式下,Client,Master和Worker是如何进行通信,注册并开启服务的呢? 1. node之间的IP

Spark技术内幕:Master的故障恢复

Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于Standby状态的Master在接收到org.apache.spark.deploy.master.ZooKeeperLeaderElectionAgent发送的ElectedLeader消息后,就开始通过ZK中保存的Application,Driver和Worker的元数据信息进行故障恢复了,它

Spark技术内幕:Worker源码与架构解析

首先通过一张Spark的架构图来了解Worker在Spark中的作用和地位: Worker所起的作用有以下几个: 1. 接受Master的指令,启动或者杀掉Executor 2. 接受Master的指令,启动或者杀掉Driver 3. 报告Executor/Driver的状态到Master 4. 心跳到Master,心跳超时则Master认为Worker已经挂了不能工作了 5. 向GUI报告Worker的状态 说白了,Worker就是整个集群真正干活的.首先看一下Worker重要的数据结构: v

Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现

如果Spark的部署方式选择Standalone,一个采用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure).Spark可以选用ZooKeeper来实现HA. ZooKeeper提供了一个Leader Election机制,利用这个机制可以保证虽然集群存在多个Master但是只有一个是Active的,其他的都是Standby,当Active的Master出现故障时,另外的一个Standby Master会被选举出来.由于