大数据量的话可以有以下方法

大数据量的话可以有以下方法:

1、数据库分表

2、数据库分区

3、是用缓存

4、用lucene处理

5、分时处理

不关EF什么事情,当然这是基本的处理方法,高级的处理方法就复杂点,不过百万级的数据,上面那些方法就够了

时间: 2024-12-23 05:20:06

大数据量的话可以有以下方法的相关文章

大数据量下的分页解决方法

最好的办法是利用sql语句进行分页,这样每次查询出的结果集中就只包含某页的数据内容.再sql语句无法实现分页的情况下,可以考虑对大的结果集通过游标定位方式来获取某页的数据. sql语句分页,不同的数据库下的分页方案各不一样,下面是主流的三种数据库的分页sql: sql server: String sql = "select top " + pageSize + " * from students where id not in" + "(select t

hadoop job解决大数据量关联时数据倾斜的一种办法

转自:http://www.cnblogs.com/xuxm2007/archive/2011/09/01/2161929.html http://www.geminikwok.com/2011/04/02/hadoop-job解å?³å¤§æ?°æ?®é??å?³è??æ—¶æ?°æ?®å?¾æ??ç??ä¸?ç§?å??æ³?/ 数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为

MySQL随机获取数据的方法,支持大数据量

最近做项目,需要做一个从mysql数据库中随机取几条数据出来. 总所周知,order by rand 会死人的..因为本人对大数据量方面的只是了解的很少,无解,去找百度老师..搜索结果千篇一律.特发到这里来,供大家学习. 在mysql中带了随机取数据的函数,在mysql中我们会有rand()函数,很多朋友都会直接使用,如果几百条数据肯定没事,如果几万或百万时你会发现,直接使用是错误的.下面我来介绍随机取数据一些优化方法. SELECT * FROM table_name ORDER BY ran

大并发大数据量请求的处理方法

大并发大数据量请求一般会分为几种情况: 1.大量的用户同时对系统的不同功能页面进行查找,更新操作 2.大量的用户同时对系统的同一个页面,同一个表的大数据量进行查询操作 3.大量的用户同时对系统的同一个页面,同一个表进行更新操作 对于第一种情况一般处理方法如下: 一.对服务器层面的处理 1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools > Advanced Settings Queue Length : 6

大数据量高并发访问的数据库优化方法

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

MySQL 大数据量快速插入方法和语句优化

MySQL大数据量快速插入方法和语句优化是本文我们主要要介绍的内容,接下来我们就来一一介绍,希望能够让您有所收获! INSERT语句的速度 插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例: 连接:(3) 发送查询给服务器:(2) 分析查询:(2) 插入记录:(1x记录大小) 插入索引:(1x索引) 关闭:(1) 这不考虑打开表的初始开销,每个并发运行的查询打开. 表的大小以logN (B树)的速度减慢索引的插入. 加快插入的一些方法 如果同时从同一个客户端插入很多行,使用含多个VA

大数据量,海量数据 处理方法总结

转自:http://blog.csdn.net/zuiaituantuan/article/details/5900981 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是00%正确的.同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字

java处理大数据量任务时的可用思路--未验证版,具体实现方法有待实践

1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的.同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字.所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了.

大数据量高并发訪问的数据库优化方法

????假设不能设计一个合理的数据库模型.不仅会添加client和server段程序的编程和维护的难度,并且将会影响系统实际运行的性能.所以,在一个系统開始实施之前,完备的数据库模型的设计是必须的. ????在一个系统分析.设计阶段.由于数据量较小.负荷较低.我们往往仅仅注意到功能的实现.而非常难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低.这时再来考虑提高系统性能则要花费很多其它的人力物力,而整个系统也不可避免的形成了一个打补丁project. ????所以在考