题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555
Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would
add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.
The input terminates by end of file marker.
Output
For each test case, output an integer indicating the final points of the power.
Sample Input
3 1 50 500
Sample Output
0 1 15 Hint From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.
Author
[email protected]
Source
2010 ACM-ICPC Multi-University
Training Contest(12)——Host by WHU
题意:
求0 到n的数中有多少个数字是含有‘49’的!
PS:
数位DP
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数
(转)状态转移如下
dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1]; // not include 49 如果不含49且,在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49
dp[i][1] = dp[i-1][0]; // not include 49 but starts with 9 这个直接在不含49的数上填个9就行了
dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; // include 49 已经含有49的数可以填0-9,或者9开头的填4
接着就是从高位开始统计
在统计到某一位的时候,加上 dp[i-1][2] * digit[i] 是显然对的,因为这一位可以填 0 - (digit[i]-1)
若这一位之前挨着49,那么加上 dp[i-1][0] * digit[i] 也是显然对的。
若这一位之前没有挨着49,但是digit[i]比4大,那么当这一位填4的时候,就得加上dp[i-1][1]
代码如下:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef __int64 LL; LL dp[27][3]; int c[27]; //dp[i][j]:长度为i的数的第j种状态 //dp[i][0]:长度为i但是不包含49的方案数 //dp[i][1]:长度为i且不含49但是以9开头的数字的方案数 //dp[i][2]:长度为i且包含49的方案数 void init() { memset(dp,0,sizeof(dp)); dp[0][0] = 1; for(int i = 1; i <= 20; i++) { dp[i][0] = dp[i-1][0]*10-dp[i-1][1]; dp[i][1] = dp[i-1][0]*1; dp[i][2] = dp[i-1][2]*10+dp[i-1][1]; } } int cal(LL n) { int k = 0; memset(c,0,sizeof(c)); while(n) { c[++k] = n%10; n/=10; } c[k+1] = 0; return k; } void solve(int len, LL n) { int flag = 0;//标记是否出现过49 LL ans = 0; for(int i = len; i >= 1; i--) { ans+=c[i]*dp[i-1][2]; if(flag) { ans+=c[i]*dp[i-1][0]; } else if(c[i] > 4) { //这一位前面没有挨着49,但c[i]比4大,那么当这一位填4的时候,要加上dp[i-1][1] ans+=dp[i-1][1]; } if(c[i+1]==4 && c[i]==9) { flag = 1; } } printf("%I64d\n",ans); } int main() { int t; LL n; init(); scanf("%d",&t); while(t--) { scanf("%I64d",&n); int len = cal(n+1); solve(len, n); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。