ART运行时Foreground GC和Background GC切换过程分析

通过前面一系列文章的学习,我们知道了ART运行时既支持Mark-Sweep GC,又支持Compacting GC。其中,Mark-Sweep GC执行效率更高,但是存在内存碎片问题;而Compacting GC执行效率较低,但是不存在内存碎片问题。ART运行时通过引入Foreground GC和Background GC的概念来对这两种GC进行扬长避短。本文就详细分析它们的执行过程以及切换过程。

老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注!

在前面ART运行时Compacting GC简要介绍和学习计划ART运行时Compacting GC堆创建过程分析这两篇文章中,我们都有提到了ART运行时的Foreground GC和Background GC。它们是在ART运行时启动通过-Xgc和-XX:BackgroundGC指定的。但是在某同一段时间,ART运行时只会执行Foreground GC或者Background GC。也就是说,Foreground GC和Background GC在整个应用程序的生命周期中是交替执行的。这就涉及到从Foreground GC切换到Background GC,或者从Background GC切换到Foreground GC的问题。

现在两个问题就来了:什么时候执行Foreground GC,什么时候执行Background GC?什么GC作为Foreground GC最合适,什么GC作为Background GC最合适?

顾名思义,Foreground指的就是应用程序在前台运行时,而Background就是应用程序在后台运行时。因此,Foreground GC就是应用程序在前台运行时执行的GC,而Background就是应用程序在后台运行时执行的GC。

应用程序在前台运行时,响应性是最重要的,因此也要求执行的GC是高效的。相反,应用程序在后台运行时,响应性不是最重要的,这时候就适合用来解决堆的内存碎片问题。因此,Mark-Sweep GC适合作为Foreground GC,而Compacting GC适合作为Background GC。

但是,ART运行时又是怎么知道应用程序目前是运行在前台还是后台呢?这就需要负责管理应用程序组件的系统服务ActivityManagerService闪亮登场了。因为ActivityManagerService清楚地知识应用程序的每一个组件的运行状态,也就是它们当前是在前台运行还是后台运行,从而得到应用程序是前台运行还是后台运行的结论。

我们通过图1来描述应用程序的运行状态与Foreground GC和Background GC的时序关系,如下所示:

图1 应用程序运行状态与Foreground GC和Background GC的时序关系

从图1还可以看到,当从Foreground GC切换到Background GC,或者从Background GC切换到Foreground GC,会发生一次Compacting GC的行为。这是由于Foreground GC和Background GC的底层堆空间结构是一样的,因此发生Foreground GC和Background GC切换时,需要将当前存活的对象从一个Space转移到另外一个Space上去。这个刚好就是Semi-Space GC和Generational Semi-Space GC合适干的事情。

图1中的显示了应用程序的两个状态:kProcessStateJankPerceptible和kProcessStateJankImperceptible。其中,kProcessStateJankPerceptible说的就是应用程序处于用户可感知的状态,这就相当于是前台状态;而kProcessStateJankImperceptible说的就是应用程序处于用户不可感知的状态,这就相当于是后台状态。

接下来,我们就结合ActivityManagerService来分析Foreground GC和Background GC的切换过程。

从前面Android应用程序的Activity启动过程简要介绍和学习计划这个系列的文章可以知道,应用程序组件是通过ActivityManagerService进行启动的。例如,当我们从Launcher启动一个应用程序时,实际的是在这个应用程序中Action和Category分别被配置为MAIN和LAUNCHER的Activity。这个Activity最终由ActivityManagerService通知其所在的进程进行启动工作的,也就是通过ApplicationThread类的成员函数scheduleLaunchActivity开始执行启动工作的。其它类型的组件的启动过程也是类似的,这里我们仅以Activity的启动过程作为示例,来说明ART运行时如何知道要进行Foreground GC和Background GC切换的。

ApplicationThread类的成员函数scheduleLaunchActivity的实现如下所示:

public final class ActivityThread {
    ......

    private class ApplicationThread extends ApplicationThreadNative {
        ......

        public final void scheduleLaunchActivity(Intent intent, IBinder token, int ident,
                ActivityInfo info, Configuration curConfig, CompatibilityInfo compatInfo,
                IVoiceInteractor voiceInteractor, int procState, Bundle state,
                PersistableBundle persistentState, List<ResultInfo> pendingResults,
                List<Intent> pendingNewIntents, boolean notResumed, boolean isForward,
                ProfilerInfo profilerInfo) {

            updateProcessState(procState, false);

            ActivityClientRecord r = new ActivityClientRecord();

            r.token = token;
            r.ident = ident;
            r.intent = intent;
            r.voiceInteractor = voiceInteractor;
            r.activityInfo = info;
            r.compatInfo = compatInfo;
            r.state = state;
            r.persistentState = persistentState;

            r.pendingResults = pendingResults;
            r.pendingIntents = pendingNewIntents;

            r.startsNotResumed = notResumed;
            r.isForward = isForward;

            r.profilerInfo = profilerInfo;

            updatePendingConfiguration(curConfig);

            sendMessage(H.LAUNCH_ACTIVITY, r);
        }

        ......
    }

    ......
}

这个函数定义在文件frameworks/base/core/java/android/app/ActivityThread.java中。

ApplicationThread类的成员函数scheduleLaunchActivity首先是调用另外一个成员函数updateProcessState更新进程的当前状态,接着再将其余参数封装在一个ActivityClientRecord对象中,并且将这个ActivityClientRecord对象通过一个H.LAUNCH_ACTIVITY消息传递给应用程序主线程处理。应用程序主线程处理对这个消息的处理就是启动指定的Activity,这个过程可以参考前面Android应用程序的Activity启动过程简要介绍和学习计划这个系列的文章。ApplicationThread类的成员函数scheduleLaunchActivity还调用了另外一个成员函数updatePendingConfiguration将参数cureConfig描述的系统当前配置信息保存下来待后面处理。

我们主要关注ApplicationThread类的成员函数updateProcessState,因为它涉及到进程状态的更新,它的实现如下所示:

public final class ActivityThread {
    ......

    private class ApplicationThread extends ApplicationThreadNative {
        ......

        public void updateProcessState(int processState, boolean fromIpc) {
            synchronized (this) {
                if (mLastProcessState != processState) {
                    mLastProcessState = processState;
                    // Update Dalvik state based on ActivityManager.PROCESS_STATE_* constants.
                    final int DALVIK_PROCESS_STATE_JANK_PERCEPTIBLE = 0;
                    final int DALVIK_PROCESS_STATE_JANK_IMPERCEPTIBLE = 1;
                    int dalvikProcessState = DALVIK_PROCESS_STATE_JANK_IMPERCEPTIBLE;
                    // TODO: Tune this since things like gmail sync are important background but not jank perceptible.
                    if (processState <= ActivityManager.PROCESS_STATE_IMPORTANT_FOREGROUND) {
                        dalvikProcessState = DALVIK_PROCESS_STATE_JANK_PERCEPTIBLE;
                    }
                    VMRuntime.getRuntime().updateProcessState(dalvikProcessState);
                    ......
                }
            }
        }

        ......
    }

    ......
}

这个函数定义在文件frameworks/base/core/java/android/app/ActivityThread.java中。

ApplicationThread类的成员变量mLastProcessState描述的是进程上一次的状态,而参数processState描述的是进程当前的状态。当这两者的值不一致时,就表明进程的状态发生了变化,这时候就需要调用VMRuntime类的成员函数updateProcessState通知ART运行时,以便ART运行时可以在Foreground GC和Background GC之间切换。

ActivityManagerService一共定义了14种进程状态,如下所示:

public class ActivityManager {
    ......

    /** @hide Process is a persistent system process. */
    public static final int PROCESS_STATE_PERSISTENT = 0;

    /** @hide Process is a persistent system process and is doing UI. */
    public static final int PROCESS_STATE_PERSISTENT_UI = 1;

    /** @hide Process is hosting the current top activities.  Note that this covers
     * all activities that are visible to the user. */
    public static final int PROCESS_STATE_TOP = 2;

    /** @hide Process is important to the user, and something they are aware of. */
    public static final int PROCESS_STATE_IMPORTANT_FOREGROUND = 3;

    /** @hide Process is important to the user, but not something they are aware of. */
    public static final int PROCESS_STATE_IMPORTANT_BACKGROUND = 4;

    /** @hide Process is in the background running a backup/restore operation. */
    public static final int PROCESS_STATE_BACKUP = 5;

    /** @hide Process is in the background, but it can‘t restore its state so we want
     * to try to avoid killing it. */
    public static final int PROCESS_STATE_HEAVY_WEIGHT = 6;

    /** @hide Process is in the background running a service.  Unlike oom_adj, this level
     * is used for both the normal running in background state and the executing
     * operations state. */
    public static final int PROCESS_STATE_SERVICE = 7;

    /** @hide Process is in the background running a receiver.   Note that from the
     * perspective of oom_adj receivers run at a higher foreground level, but for our
     * prioritization here that is not necessary and putting them below services means
     * many fewer changes in some process states as they receive broadcasts. */
    public static final int PROCESS_STATE_RECEIVER = 8;

    /** @hide Process is in the background but hosts the home activity. */
    public static final int PROCESS_STATE_HOME = 9;

    /** @hide Process is in the background but hosts the last shown activity. */
    public static final int PROCESS_STATE_LAST_ACTIVITY = 10;

    /** @hide Process is being cached for later use and contains activities. */
    public static final int PROCESS_STATE_CACHED_ACTIVITY = 11;

    /** @hide Process is being cached for later use and is a client of another cached
     * process that contains activities. */
    public static final int PROCESS_STATE_CACHED_ACTIVITY_CLIENT = 12;

    /** @hide Process is being cached for later use and is empty. */
    public static final int PROCESS_STATE_CACHED_EMPTY = 13;

    ......
}

这些进程状态值定义在文件frameworks/base/core/java/android/app/ActivityManager.java。

每一个进程状态都通过一个整数来描述,其中,值越小就表示进程越重要。ART运行时将状态值大于等于PROCESS_STATE_IMPORTANT_FOREGROUND的进程都认为是用户可感知的,也就是前台进程,其余的进程则认为是用户不可感知的,也就是后台进程。通过这种方式,ApplicationThread类的成员函数updateProcessState就可以简化ART运行时对进程状态的处理。

除了上述的Activity的Launch启动生命周期函数被ActivityManagerService通知调用时,Activity的Resume生命周期函数被ActivityManagerService通知调用调用时,也会发生类似的通过VMRuntime类的成员函数updateProcessState通知ART运行时应用程序状态发生了改变。对于其它的组件,例如Broadcast Receiver组件被触发时,Service组件被创建以及被绑定时,也会通过VMRuntime类的成员函数updateProcessState通知ART运行时应用程序状态发生了改变。

不过,上述组件的生命周期对应的都是应用程序处于前台时的情况,也就是要求ART运行时从Background GC切换为Foreground GC的情况。当应用程序处于后台时,ActivityManagerService是通过直接设置应用程序的状态来通知ART运行时应用程序状态发生了改变的。

ApplicationThread类实现了一个Binder接口setProcessState,供ActivityManagerService直接设置应用程序的状态,它的实现如下所示:

public final class ActivityThread {
    ......

    private class ApplicationThread extends ApplicationThreadNative {
        ......

        public void setProcessState(int state) {
            updateProcessState(state, true);
        }

        ......
    }

    ......
}

这个函数定义在文件frameworks/base/core/java/android/app/ActivityThread.java中。

ApplicationThread类实现的Binder接口setProcessState也是通过上面分析的成员函数updateProcessState来通知ART运行时进程状态发生了改变的。不过这时候进程的状态就有可能是从前面进程变为后台进程,例如当运行在该进程的Activity组件处理Stop状态时。

接下来我们继续分析VMRuntime类的成员函数updateProcessState的实现,以便了解ART运行时执行Foreground GC和Background GC切换的过程,如下所示:

public final class VMRuntime {
    ......

    /**
     * Let the heap know of the new process state. This can change allocation and garbage collection
     * behavior regarding trimming and compaction.
     */
    public native void updateProcessState(int state);

    ......
}

这个函数定义在文件libcore/libart/src/main/java/dalvik/system/VMRuntime.java中。

VMRuntime类的成员函数updateProcessState是一个Native函数,它由C++层的函数VMRuntime_updateProcessState实现,如下所示:

static void VMRuntime_updateProcessState(JNIEnv* env, jobject, jint process_state) {
  Runtime::Current()->GetHeap()->UpdateProcessState(static_cast<gc::ProcessState>(process_state));
  ......
}

这个函数定义在文件art/runtime/native/dalvik_system_VMRuntime.cc中。

函数VMRuntime_updateProcessState主要是调用了Heap类的成员函数UpdateProcessState来通知ART运行时切换Foreground GC和Background GC,后者的实现如下所示:

void Heap::UpdateProcessState(ProcessState process_state) {
  if (process_state_ != process_state) {
    process_state_ = process_state;
    ......
    if (process_state_ == kProcessStateJankPerceptible) {
      // Transition back to foreground right away to prevent jank.
      RequestCollectorTransition(foreground_collector_type_, 0);
    } else {
      // Don‘t delay for debug builds since we may want to stress test the GC.
      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
      // special handling which does a homogenous space compaction once but then doesn‘t transition
      // the collector.
      RequestCollectorTransition(background_collector_type_,
                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
    }
  }
}

这个函数定义在文件art/runtime/gc/heap.cc中。

Heap类的成员变量prcess_state_记录了进程上一次的状态,参数process_state描述进程当前的状态。当这两者的值不相等的时候,就说明进程状态发生了变化。

如果是从kProcessStateJankImperceptible状态变为kProcessStateJankPerceptible状态,那么就调用Heap类的成员函数RequestCollectorTransition请求马上将当前的GC设置为Foreground GC。

如果是从kProcessStateJankPerceptible状态变为kProcessStateJankImperceptible,那么就调用Heap类的成员函数RequestCollectorTransition请求将当前的GC设置为Background GC。注意,在这种情况下,对于非DEBUG版本的ART运行时,不是马上将当前的GC设置为Background GC的,而是指定在kCollectorTransitionWait(5秒)时间后再设置。这样使得进程进入后台运行的一小段时间内,仍然可以使用效率较高的Mark-Sweep GC。

Heap类的成员函数RequestCollectorTransition的实现如下所示:

void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
  Thread* self = Thread::Current();
  {
    MutexLock mu(self, *heap_trim_request_lock_);
    if (desired_collector_type_ == desired_collector_type) {
      return;
    }
    heap_transition_or_trim_target_time_ =
        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
    desired_collector_type_ = desired_collector_type;
  }
  SignalHeapTrimDaemon(self);
}

这个函数定义在文件art/runtime/gc/heap.cc中。

Heap类的成员函数RequestCollectorTransition首先将要切换至的目标GC以及时间点记录在成员变量desired_collector_type_和heap_transition_or_trim_target_time_中,接着再调用另外一个成员函数SignalHeapTrimDaemon唤醒一个Heap Trimmer守护线程来执行GC切换操作。注意,如果上一次请求的GC切换还未执行,又请求了下一次GC切换,并且下一次GC切换指定的时间大于上一次指定的时间,那么上次请求的GC切换就会被取消。

Heap类的成员函数RequestCollectorTransition的实现如下所示:

void Heap::SignalHeapTrimDaemon(Thread* self) {
  JNIEnv* env = self->GetJniEnv();
  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
  CHECK(!env->ExceptionCheck());
}

这个函数定义在文件art/runtime/gc/heap.cc中。

Heap类的成员函数RequestCollectorTransition通过JNI接口调用了Daemons类的静态成员函数requestHeapTrim请求执行一次GC切换操作。

Daemons类的静态成员函数requestHeapTrim的实现如下所示:

public final class Daemons {
    ......

    public static void requestHeapTrim() {
        synchronized (HeapTrimmerDaemon.INSTANCE) {
            HeapTrimmerDaemon.INSTANCE.notify();
        }
    }

    ......
}

这个函数定义在文件libcore/libart/src/main/java/java/lang/Daemons.java中。

在前面ART运行时垃圾收集(GC)过程分析一文中提到,Java层的java.lang.Daemons类在加载的时候,会启动五个与堆或者GC相关的守护线程,其中一个守护线程就是HeapTrimmerDaemon,这里通过调用它的成员函数notify来唤醒它。

HeapTrimmerDaemon原先被Block在成员函数run中,当它被唤醒之后 ,就会继续执行它的成员函数run,如下所示:

public final class Daemons {
    ......

    private static class HeapTrimmerDaemon extends Daemon {
        private static final HeapTrimmerDaemon INSTANCE = new HeapTrimmerDaemon();

        @Override public void run() {
            while (isRunning()) {
                try {
                    synchronized (this) {
                        wait();
                    }
                    VMRuntime.getRuntime().trimHeap();
                } catch (InterruptedException ignored) {
                }
            }
        }
    }

    ......
}

这个函数定义在文件libcore/libart/src/main/java/java/lang/Daemons.java中。

从这里就可以看到,HeapTrimmerDaemon被唤醒之后,就会调用VMRuntime类的成员函数trimHeap来执行GC切换操作。

VMRuntime类的成员函数trimHeap是一个Native函数,由C++层的函数VMRuntime_trimHeap实现,如下所示:

static void VMRuntime_trimHeap(JNIEnv*, jobject) {
  Runtime::Current()->GetHeap()->DoPendingTransitionOrTrim();
}

这个函数定义在文件art/runtime/native/dalvik_system_VMRuntime.cc 。

函数VMRuntime_trimHeap又是通过调用Heap类的成员函数DoPendingTransitionOrTrim来执行GC切换操作的,如下所示:

void Heap::DoPendingTransitionOrTrim() {
  Thread* self = Thread::Current();
  CollectorType desired_collector_type;
  // Wait until we reach the desired transition time.
  while (true) {
    uint64_t wait_time;
    {
      MutexLock mu(self, *heap_trim_request_lock_);
      desired_collector_type = desired_collector_type_;
      uint64_t current_time = NanoTime();
      if (current_time >= heap_transition_or_trim_target_time_) {
        break;
      }
      wait_time = heap_transition_or_trim_target_time_ - current_time;
    }
    ScopedThreadStateChange tsc(self, kSleeping);
    usleep(wait_time / 1000);  // Usleep takes microseconds.
  }
  // Launch homogeneous space compaction if it is desired.
  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
    if (!CareAboutPauseTimes()) {
      PerformHomogeneousSpaceCompact();
    }
    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
    desired_collector_type = collector_type_;
    return;
  }
  // Transition the collector if the desired collector type is not the same as the current
  // collector type.
  TransitionCollector(desired_collector_type);
  ......
  // Do a heap trim if it is needed.
  Trim();
}

这个函数定义在文件art/runtime/gc/heap.cc中。

前面提到,下一次GC切换时间记录在Heap类的成员变量heap_transition_or_trim_target_time_中,因此,Heap类的成员函数DoPendingTransitionOrTrim首先是看看当前时间是否已经达到指定的GC切换时间。如果还没有达到,那么就进行等待,直到时间到达为止。

有一种特殊情况,如果要切换至的GC是kCollectorTypeHomogeneousSpaceCompact,并且Heap类的成员函数CareAboutPauseTimes表明不在乎执行HomogeneousSpaceCompact GC带来的暂停时间,那么就会调用Heap类的成员函数PerformHomogeneousSpaceCompact执行一次同构空间压缩。Heap类的成员函数PerformHomogeneousSpaceCompact执行同构空间压缩的过程,可以参考前面ART运行时Compacting GC为新创建对象分配内存的过程分析一文。

Heap类的成员函数CareAboutPauseTimes实际上是判断进程的当前状态是否是用户可感知的,即是否等于kProcessStateJankPerceptible。如果是的话,就说明它在乎GC执行时带来的暂停时间。它的实现如下所示:

class Heap {
 public:
  ......

  // Returns true if we currently care about pause times.
  bool CareAboutPauseTimes() const {
    return process_state_ == kProcessStateJankPerceptible;
  }

 ......
};

这个函数定义在文件art/runtime/gc/heap.h中。

回到Heap类的成员函数DoPendingTransitionOrTrim中,我们继续讨论要切换至的GC是kCollectorTypeHomogeneousSpaceCompact的情况。如果Heap类的成员函数CareAboutPauseTimes表明在乎执行HomogeneousSpaceCompact GC带来的暂停时间,那么就不会调用Heap类的成员函数PerformHomogeneousSpaceCompact执行同构空间压缩。

只要切换至的GC是kCollectorTypeHomogeneousSpaceCompact,无论上述的哪一种情况,都不会真正执行GC切换的操作,因此这时候Heap类的成员函数DoPendingTransitionOrTrim就可以返回了。

从前面的调用过程可以知道,要切换至的GC要么是Foreground GC,要么是Background GC。一般来说,我们是不会将Foreground GC设置为HomogeneousSpaceCompact GC的,但是却有可能将Background GC设置为HomogeneousSpaceCompact GC。因此,上述讨论的情况只发生在Foreground GC切换为Background GC的时候。

另一方面,如果要切换至的GC不是kCollectorTypeHomogeneousSpaceCompact,那么Heap类的成员函数DoPendingTransitionOrTrim就会调用另外一个成员函数TransitionCollector执行切换GC操作。一旦GC切换完毕,Heap类的成员函数DoPendingTransitionOrTrim还会调用成员函数Trim对当前ART运行时堆进行裁剪,也就是将现在没有使用到的内存归还给内核。这个过程可以参考前面ART运行时垃圾收集(GC)过程分析一文。

接下来我们继续分析Heap类的成员函数TransitionCollector的实现,以便了GC的切换过程,如下所示:

void Heap::TransitionCollector(CollectorType collector_type) {
  if (collector_type == collector_type_) {
    return;
  }
  ......
  ThreadList* const tl = runtime->GetThreadList();
  ......
  // Busy wait until we can GC (StartGC can fail if we have a non-zero
  // compacting_gc_disable_count_, this should rarely occurs).
  for (;;) {
    {
      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
      MutexLock mu(self, *gc_complete_lock_);
      // Ensure there is only one GC at a time.
      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
      // Currently we only need a heap transition if we switch from a moving collector to a
      // non-moving one, or visa versa.
      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
      // If someone else beat us to it and changed the collector before we could, exit.
      // This is safe to do before the suspend all since we set the collector_type_running_ before
      // we exit the loop. If another thread attempts to do the heap transition before we exit,
      // then it would get blocked on WaitForGcToCompleteLocked.
      if (collector_type == collector_type_) {
        return;
      }
      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
      if (!copying_transition || disable_moving_gc_count_ == 0) {
        // TODO: Not hard code in semi-space collector?
        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
        break;
      }
    }
    usleep(1000);
  }
  tl->SuspendAll();
  switch (collector_type) {
    case kCollectorTypeSS: {
      if (!IsMovingGc(collector_type_)) {
        // Create the bump pointer space from the backup space.
        ......
        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
        // pointer space last transition it will be protected.
        .....
        mem_map->Protect(PROT_READ | PROT_WRITE);
        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
                                                                        mem_map.release());
        AddSpace(bump_pointer_space_);
        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
        // Use the now empty main space mem map for the bump pointer temp space.
        mem_map.reset(main_space_->ReleaseMemMap());
        // Unset the pointers just in case.
        if (dlmalloc_space_ == main_space_) {
          dlmalloc_space_ = nullptr;
        } else if (rosalloc_space_ == main_space_) {
          rosalloc_space_ = nullptr;
        }
        // Remove the main space so that we don‘t try to trim it, this doens‘t work for debug
        // builds since RosAlloc attempts to read the magic number from a protected page.
        RemoveSpace(main_space_);
        RemoveRememberedSet(main_space_);
        delete main_space_;  // Delete the space since it has been removed.
        main_space_ = nullptr;
        RemoveRememberedSet(main_space_backup_.get());
        main_space_backup_.reset(nullptr);  // Deletes the space.
        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
                                                                mem_map.release());
        AddSpace(temp_space_);
      }
      break;
    }
    case kCollectorTypeMS:
      // Fall through.
    case kCollectorTypeCMS: {
      if (IsMovingGc(collector_type_)) {
        ......
        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
        RemoveSpace(temp_space_);
        temp_space_ = nullptr;
        mem_map->Protect(PROT_READ | PROT_WRITE);
        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
                              mem_map->Size());
        mem_map.release();
        // Compact to the main space from the bump pointer space, don‘t need to swap semispaces.
        AddSpace(main_space_);
        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
        RemoveSpace(bump_pointer_space_);
        bump_pointer_space_ = nullptr;
        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
        ......
        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
                                                             mem_map->Size(), mem_map->Size(),
                                                             name, true));
        ......
        mem_map.release();
      }
      break;
    }
    default: {
      ......
      break;
    }
  ChangeCollector(collector_type);
  tl->ResumeAll();
  ......
}

这个函数定义在文件art/runtime/gc/heap.h中。

Heap类的成员函数TransitionCollector首先判断ART运行时当前使用的GC与要切换至的GC是一样的,那么就什么也不用做就返回了。

另一方面,如果ART运行时当前使用的GC与要切换至的GC是不一样的,那么接下来就要将ART运行时当前使用的GC切换至参数collector_type描述的GC了。由于将GC切换是通过执行一次Semi-Space GC或者Generational Semi-Space GC来实现的,因此Heap类的成员函数TransitionCollector在继续往下执行之前,要先调用Heap类的成员函数WaitForGcToCompleteLocked判断当前是否有GC正在执行。如果有的话,就进行等待,直到对应的GC执行完为止。

注意,有可能当前正在执行的GC就是要切换至的GC,在这种情况下,就没有必要将当前使用的GC切换为参数collector_type描述的GC了。此外,只有从当前执行的GC和要切换至的GC不同时为Compacting GC或者Mark-Sweep GC的时候,Heap类的成员函数TransitionCollector才会真正执行切换的操作。换句话说,只有从Compacting GC切换为Mark-Sweep GC或者从Mark-Sweep GC切换为Compacting GC时,Heap类的成员函数TransitionCollector才会真正执行切换的操作。但是,如果这时候ART运行时被禁止执行Compacting GC,即Heap类的成员函数disable_moving_gc_count_不等于0,那么Heap类的成员函数TransitionCollector就需要继续等待,直到ART运行时重新允许执行Compacting GC为止。这是因为接下来的GC切换操作是通过执行一次Compacting GC来实现的。

接下来的GC切换操作是通过调用Heap类的成员函数Compact来实现的。关于Heap类的成员函数Compact,我们在前面ART运行时Compacting GC为新创建对象分配内存的过程分析一文已经分析过了,它主要通过执行一次Semi-Space GC、Generational Semi-Space GC或者Mark-Compact GC将指定的Source Space上的存活对象移动至指定的Target Space中。如果Source Space与Target Space相同,那么执行的就是Mark-Compact GC,否则就是Semi-Space GC或者Generational Semi-Space GC。由于Heap类的成员函数Compact是需要在Stop-the-world的前提下执行的,因此在调用它的前后,需要执行挂起和恢复除当前正在执行的线程之外的所有ART运行时线程。

Heap类的成员函数TransitionCollector通过switch语句来确定需要传递给成员函数Compact的Source Space和Target Space。通过这个switch语句,我们也可以更清楚看到Heap类的成员函数TransitionCollector允许从什么GC切换至什么GC。

首先,可切换至的GC只有三种,分别为Semi-Space GC、Mark-Sweep GC和Concurrent Mark-Sweep GC。其中,当要切换至的GC为Mark-Sweep GC和Concurrent Mark-Sweep GC时,它们的切换过程是一样的。因此,接下来我们就分两种情况来讨论。

第一种情况是要切换至的GC为Semi-Space GC。根据我们前面的分析,这时候原来的GC只能为Mark-Sweep GC或者Concurrent Mark-Sweep GC。否则的话,就不需要执行GC切换操作。从前面ART运行时Compacting GC堆创建过程分析一文可以知道,当原来的GC为Mark-Sweep GC或者Concurrent Mark-Sweep GC时,ART运行时堆由Image Space、Zygote Space、Non Moving Space、Main Space、Main Backup Space和Large Object Space组成。这时候要做的是将Main Space上的存活对象移动至一个新创建的Bump Pointer Space上去。也就是说,这时候的Source Space为Main Space,而Target Space为Bump Pointer Space。

Main Space就保存在Heap类的成员变量main_space_中,因此就很容易可以获得。但是这时候是没有现成的Bump Pointer Space的,因此就需要创建一个。由于这时候的Main Backup Space是闲置的,并且当GC切换完毕,它也用不上了,因此我们就可以将Main Backup Space底层使用的内存块获取回来,然后再封装成一个Bump Pointer Space。注意,这时候创建的Bump Pointer Space也是作为GC切换完成后的Semi-Space GC的From Space使用的,因此,除了要将它保存在Heap类的成员变量bump_pointer_space_之外,还要将它添加到ART运行时堆的Space列表中去。

这时候Source Space和Target Space均已准备完毕,因此就可以执行Heap类的成员函数Compact了。执行完毕,还需要做一系列的清理工作,包括:

1. 删除Main Space及其关联的Remembered Set。从前面ART运行时Compacting GC堆创建过程分析一文可以知道,Heap类的成员变量dlmalloc_space_和rosalloc_space_指向的都是Main Space。既然现在Main Space要被删除了,因此就需要将它们设置为nullptr。

2. 删除Main Backup Space及其关联的Remembered Set。

3. 创建一个Bump Pointer Space保存在Heap类的成员变量temp_space_中,作为GC切换完成后的Semi-Space GC的To Space使用。注意,这个To Space底层使用的内存块是来自于原来的Main Space的。

这意味着将从Mark-Sweep GC或者Concurrent Mark-Sweep GC切换为Semi-Space GC之后,原来的Main Space和Main Backup Space就消失了,并且多了两个Bump Pointer Space,其中一个作为From Space,另外一个作为To Space,并且From Space上的对象来自于原来的Main Space的存活对象。

第二种情况是要切换至Mark-Sweep GC或者Concurrent Mark-Sweep GC。根据我们前面的分析,这时候原来的GC只能为Semi-Space GC、Generational Semi-Space GC或者Mark-Compact GC。否则的话,就不需要执行GC切换操作。从前面ART运行时Compacting GC堆创建过程分析一文可以知道,当原来的GC为Semi-Space GC、Generational Semi-Space GC或者Mark-Compact GC时,ART运行时堆由Image Space、Zygote Space、Non Moving Space、Bump Pointer Space、Temp Space和Large Object Space组成。这时候要做的是将Bump Pointer Space上的存活对象移动至一个新创建的Main Space上去。也就是说,这时候的Source Space为Bump Pointer Space,而Target Space为Main Space。

Bump Pointer Space就保存在Heap类的成员变量bump_pointer_space_中,因此就很容易可以获得。但是这时候是没有现成的Main Space的,因此就需要创建一个。由于这时候的Temp Space是闲置的,并且当GC切换完毕,它也用不上了,因此我们就可以将Temp Space底层使用的内存块获取回来,然后再封装成一个Main Space,这是通过调用Heap类的成员函数CreateMainMallocSpace来实现的。注意,Heap类的成员函数CreateMainMallocSpace在执行的过程中,会将创建的Main Space保存在Heap类的成员变量main_space_中,并且它也是作为GC切换完成后的Mark-Sweep GC或者Concurrent Mark-Sweep GC的Main Space使用的,因此,就还要将它添加到ART运行时堆的Space列表中去。

这时候Source Space和Target Space均已准备完毕,因此就可以执行Heap类的成员函数Compact了。执行完毕,还需要做一系列的清理工作,包括:

1. 删除Bump Pointer Space。

2. 删除Temp Space。

3. 创建一个Main Backup Space,保存在Heap类的成员变量main_space_backup_中,这是通过调用Heap类的成员函数CreateMallocSpaceFromMemMap实现的,并且该Main Backup Space底层使用的内存块是来自于原来的Bump Pointer Space的。

这样,GC切换的操作就基本执行完毕,最后还需要做的一件事情是调用Heap类的成员函数ChangeCollector记录当前使用的GC,以及相应地调整当前可用的内存分配器。这个函数的具体实现可以参考前面ART运行时Compacting GC为新创建对象分配内存的过程分析一文。

至此,ART运行时Foreground GC和Background GC的切换过程分析就分析完成了,ART运行时引进的Compacting GC的学习计划也完成了,重新学习可以参考ART运行时Compacting GC简要介绍和学习计划一文,更多的信息也可以关注老罗的新浪微博:http://weibo.com/shengyangluo

时间: 2024-10-04 11:35:40

ART运行时Foreground GC和Background GC切换过程分析的相关文章

ART运行时Mark-Compact( MC)GC执行过程分析

除了Semi-Space(SS)GC和Generational Semi-Space(GSS)GC,ART运行时还引入了第三种Compacting GC:Mark-Compact(MC)GC.这三种GC虽然都是Compacting GC,不过它们的实现方式却有很大不同.SS GC和GSS GC需两个Space来压缩内存,而MC GC只需一个Space来压缩内存.本文就详细分析MC GC的执行过程. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! 从前面AR

ART运行时Compacting GC为新创建对象分配内存的过程分析

在引进Compacting GC后,ART运行时优化了堆内存分配过程.最显著特点是为每个ART运行时线程增加局部分配缓冲区(Thead Local Allocation Buffer)和在OOM前进行一次同构空间压缩(Homogeneous Space Compact).前者可提高堆内存分配效率,后者可解决内存碎片问题.本文就对ART运行时引进Compacting GC后的堆内存分配过程进行分析. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! 从接口层面

ART运行时Compacting GC堆创建过程分析

引进了Compacting GC之后,ART运行时的堆空间结构就发生了变化.这是由于Compacting GC和Mark-Sweep GC的算法不同,要求底层的堆具有不同的空间结构.同时,即使是原来的Mark-Sweep GC,由于需要支持新的同构空间压缩特性(Homogeneous Space Compact),也使得它们要具有与原来不一样的堆空间结构.本文就对这些堆空间创建过程进行详细的分析. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! 从前面AR

ART运行时Semi-Space(SS)和Generational Semi-Space(GSS)GC执行过程分析

Semi-Space(SS)GC和Generational Semi-Space(GSS)GC是ART运行时引进的两个Compacting GC.它们的共同特点是都具有一个From Space和一个To Space.在GC执行期间,在From Space分配的还存活的对象会被依次拷贝到To Space中,这样就可以达到消除内存碎片的目的.本文就将SS GC和GSS GC的执行过程分析进行详细分析. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! 与SS G

ART运行时Java堆创建过程分析

与Dalvik虚拟机一样,ART运行时内部也有一个Java堆,用来分配Java对象.当这些Java对象不再被使用时,ART运行时需要回收它们占用的内存.在前面一文中,我们简要介绍了ART运行时的垃圾收集机制,从中了解到ART运行时内部使用的Java堆是由四种Space以及各种辅助数据结构共同描述的.为了后面可以更好地分析ART运行时的垃圾收集机制,本文就对它内部使用的Java堆的创建过程进行分析. 本博参加博客之星评选,求投票:点击投票 老罗的新浪微博:http://weibo.com/shen

Android运行时ART执行类方法的过程分析

在前面一篇文章中,我们分析了ART运行时加载类以及查找其方法的过程.一旦找到了目标类方法,我们就可以获得它的DEX字节码或者本地机器指令,这样就可以对它进行执行了.在ART运行时中,类方法的执行方式有两种.一种是像Dalvik虚拟机一样,将其DEX字节码交给解释器执行:另一种则是直接将其本地机器指令交给CPU执行.在本文中,我们就将通过分析ART运行时执行类方法的过程来理解ART运行时的运行原理. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! 我们先来看

Android运行时ART简要介绍和学习计划

Android在4.4就已推出新运行时ART,准备替代用了有些时日的Dalvik.不过当时尚属测试版,主角仍是Dalvik. 直到今年的Google I/O大会,ART才正式取代Dalvik.这个消息在科技界引起不小轰动,也吸引不少技术人员对它的"技术分析".可惜这些"技术分析"不过是引用了官方的数据和图表而已.这一系列文章将对ART进行真正的技术分析.老规矩,分析前先进行简要介绍和制定学习计划. 老罗的新浪微博:http://weibo.com/shengyang

Android运行时ART加载类和方法的过程分析

在前一篇文章中,我们通过分析OAT文件的加载过程,认识了OAT文件的格式,其中包含了原始的DEX文件.既然ART运行时执行的都是翻译DEX字节码后得到的本地机器指令了,为什么还需要在OAT文件中包含DEX文件,并且将它加载到内存去呢?这是因为ART运行时提供了Java虚拟机接口,而要实现Java虚拟机接口不得不依赖于DEX文件.本文就通过分析ART运行时加载类及其方法的过程来理解DEX文件的作用. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! 在前面An

ART运行时为新创建对象分配内存的过程分析

ART运行时和Dalvik虚拟机一样,在堆上为对象分配内存时都要解决内存碎片和内存不足问题.内存碎片问题可以使用dlmalloc技术解决.内存不足问题则通过垃圾回收和在允许范围内增长堆大小解决.由于垃圾回收会影响程序,因此ART运行时采用力度从小到大的进垃圾回收策略.一旦力度小的垃圾回收执行过后能满足分配要求,那就不需要进行力度大的垃圾回收了.本文就详细分析ART运行时在堆上为对象分配内存的过程. 本博参加博客之星评选,求投票:点击投票 老罗的新浪微博:http://weibo.com/shen