【欧拉函数】BZOJ4173-数学

【题目大意】

【思路】

基本是popoqqq大爷的题解,稍微添加了几句自己的注释,方便理解

同理,如果n%k+m%k<k等价于0

=∑([(n+m)/k]-[n/k]-[m/k])×φ(k) ……因为k不满足条件的时候前面为0

……其实右边两个∑也是k=1..(m+n),但是k>n的时候,[n/k]显然为0,m同理。

【错误点XXXXD】

……程序烧杯,po也是烧杯。不要忘了ll,不要忘了MOD……

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cstring>
 5 #define MOD 998244353
 6 using namespace std;
 7 typedef long long ll;
 8
 9 ll phi(ll x)
10 {
11     ll ret=x;
12     for (ll i=2;i*i<=x;i++)
13     {
14         if (x%i==0)
15         {
16             ret-=ret/i;
17             while (x%i==0) x/=i;
18         }
19     }
20     if (x>1) ret-=ret/x;
21     return ret%MOD;
22 }
23
24 void solve()
25 {
26     ll n,m;
27     scanf("%lld%lld",&n,&m);
28     printf("%lld",(phi(n)%MOD)*(phi(m)%MOD)%MOD*(n%MOD)%MOD*(m%MOD)%MOD);
29 }
30
31 int main()
32 {
33     solve();
34     return 0;
35 }

          

时间: 2025-01-30 12:52:29

【欧拉函数】BZOJ4173-数学的相关文章

【BZOJ4173】数学 欧拉函数神题

[BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N,M<=10^15 题解:STEP 1: 这步还是很容易的吧~毕竟原来的式子不太舒服.但是注意,最后一个式子的取值只能为0或1,所以就变成了. STEP 2: 这步倒是难理解一些,但是考虑:我们将这三个等式都算出来,如果满足了左边那个条件,那么这三个等式加起来为1,对答案的贡献正好为$\varphi

【学习总结】数学-欧拉函数

定义 欧拉函数f(n)表示小于n并且与n互质的数的个数 f(n)=n(1?1p1)(1?1p2)-(1?1pk)(pi为n的质因子) 代码 C++ 单个处理 int eulerPhi(int n) { int m = (int)sqrt(n+0.5); in ans = n; for (int i = 2; i <= m; i++) { if (n % i == 0) { ans = ans / i * (i-1); while (n%i==0) n /= i; } } if (n > 1)

NOIP模拟:切蛋糕(数学欧拉函数)

题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段. 但是, BG 并不知道要有多少人来. 他只知道, 来的人数为n的约数,且小于n. 显然把蛋糕平均分成 n 块一定能满足要求.但是, BG 想要分出的块数尽量少.现在 BG 想知道,他要把蛋糕分成至少多少块,才能使得不管多少人来都能满足要求. 输入格式 输入文件名为 cake.in. 输入共一个整

LA 7362 Farey (数学,欧拉函数)

题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数. 析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然AC了,才2s,题目是给了3s,很明显是由前面递推,前面成立的,后面的也成立, 只要判定第 i 个有几个,再加前 i-1 个就好,第 i 个就是判断与第 i 个互质的数有多少,这就是欧拉函数了. 代码如下: 这是欧拉函数的. #pragma comment(linker, "/STACK:102400

UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

Given the value of N, you will have to ?nd the value of G. The de?nition of G is given below:G =i<N∑i=1j∑≤Nj=i+1GCD(i, j)Here GCD(i, j) means the greatest common divisor of integer i and integer j.For those who have trouble understanding summation no

数学之欧拉函数 &amp;几道poj欧拉题

欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int Euler(int n) { int res=n; for(int i=2;i*i<=n;i++) { while(n%i==0) { n/=i; res

O(N)的素数筛选法和欧拉函数

首先,在谈到素数筛选法时,先涉及几个小知识点. 1.一个数是否为质数的判定. 质数,只有1和其本身才是其约数,所以我们判定一个数是否为质数,只需要判定2~(N - 1)中是否存在其约数即可,此种方法的时间复杂度为O(N),随着N的增加,效率依然很慢.这里有个O()的方法:对于一个合数,其必用一个约数(除1外)小于等于其平方根(可用反证法证明),所以我们只需要判断2-之间的数即可. bool is_prime(int num) { const int border = sqrt(num); for

POJ2480 Longge&#39;s problem 欧拉函数的应用 &amp;&amp; 积性函数

题意很简单,求sum(gcd(i,n))   1<=i<=n; 这题看到后第一反应并没有里用积性函数的性质,不过也可以做,欣慰的是我反应还是比较快的 设f(n)=gcd(1,n)+gcd(2,n)+....+gcd(n-1,n) + gcd(n,n), 用g(n,i)表示满足 gcd(x,n)=i的 x的个数 (x小于n),则 f(n)=sum{i*g(n,i)}; 同时又利用 扩展欧几里德的性质  gcd(x,n)=i  的充要条件是 gcd(x/i,n/i)==1,所以 满足 x/i的解有

数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)

数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门, 所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的) (PS:文中蓝色字体都可以点进去查看百度原文) 附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门) 一.同余定理 简单粗暴的说就是:若 a-b == m 那么 a%m == b%m 这个模运算性质一眼看出...直接上入门水题: Reduced ID Numbers 附AC代码(这个也没啥模板....知道就好) #inclu

Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp