K-th Number
Time Limit: 20000MS | Memory Limit: 65536K | |
Total Submissions: 39737 | Accepted: 12955 | |
Case Time Limit: 2000MS |
Description
You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1...n] of different integer numbers, your
program must answer a series of questions Q(i, j, k) in the form: "What
would be the k-th number in a[i...j] segment, if this segment was
sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the
question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort
this segment, we get (2, 3, 5, 6), the third number is 5, and therefore
the answer to the question is 5.
Input
The
first line of the input file contains n --- the size of the array, and m
--- the number of questions to answer (1 <= n <= 100 000, 1 <=
m <= 5 000).
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each
description consists of three numbers: i, j, and k (1 <= i <= j
<= n, 1 <= k <= j - i + 1) and represents the question Q(i, j,
k).
Output
For each question output the answer to it --- the k-th number in sorted a[i...j] segment.
Sample Input
7 3 1 5 2 6 3 7 4 2 5 3 4 4 1 1 7 3
Sample Output
5 6 3
Hint
This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
题意:给你n个数,然后查询[l,r]内第k大的数
//qscqesze #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define maxn 100001 #define eps 1e-9 const int inf=0x7fffffff; //无限大 int a[maxn],t[maxn]; int T[maxn*30],lson[maxn*30],rson[maxn*30],c[maxn*30]; int n,q,m; int tot; void init() { for(int i=1;i<=n;i++) t[i]=a[i]; sort(t+1,t+1+n); m=unique(t+1,t+1+n)-t-1; } int build(int l,int r) { int root=tot++; c[root]=0; if(l!=r) { int mid=(l+r)>>1; lson[root]=build(l,mid); lson[root]=build(mid+1,r); } return root; } int hash(int x) { return lower_bound(t+1,t+1+m,x)-t; } int update(int root,int pos,int val) { int newroot=tot++,tmp=newroot; c[newroot]=c[root]+val; int l=1,r=m; while(l<r) { int mid=(l+r)>>1; if(pos<=mid) { lson[newroot]=tot++; rson[newroot]=rson[root]; newroot=lson[newroot]; root=lson[root]; r=mid; } else { rson[newroot]=tot++; lson[newroot]=lson[root]; newroot=rson[newroot]; root=rson[root]; l=mid+1; } c[newroot]=c[root]+val; } return tmp; } int query(int left_root,int right_root,int k) { int l=1,r=m; while(l<r) { int mid=(l+r)>>1; if(c[lson[left_root]]-c[lson[right_root]]>=k) { r=mid; left_root=lson[left_root]; right_root=lson[right_root]; } else { l=mid+1; k-=c[lson[left_root]]-c[lson[right_root]]; left_root=rson[left_root]; right_root=rson[right_root]; } } return l; } int main() { while(cin>>n>>q) { tot=0; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } init(); T[n+1]=build(1,m); for(int i=n;i>=0;i--) { int pos=hash(a[i]); T[i]=update(T[i+1],pos,1); } while(q--) { int l,r,k; scanf("%d%d%d",&l,&r,&k); printf("%d\n",t[query(T[l],T[r+1],k)]); } } return 0; }