Description
This is yet another problem dealing with regular bracket sequences.
We should remind you that a bracket sequence is called regular, if by inserting «+» and «1» into it we can get a correct mathematical expression. For example, sequences «(())()», «()» and «(()(()))» are regular, while «)(», «(()» and «(()))(» are not.
You are given a string of «(» and «)» characters. You are to find its longest substring that is a regular bracket sequence. You are to find the number of such substrings as well.
Input
The first line of the input file contains a non-empty string, consisting of «(» and «)» characters. Its length does not exceed 106.
Output
Print the length of the longest substring that is a regular bracket sequence, and the number of such substrings. If there are no such substrings, write the only line containing "0 1".
Sample Input
Input
)((())))(()())
Output
6 2
Input
))(
Output
0 1
#include <cstdio> #include <queue> #include <stack> #include <cmath> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; const int oo = 1e9; const double PI = acos(-1); const int N = 1e6+7; char str[N]; int len[N];/**< 如果这个位置是‘)‘ 保存从字符串头部开始到这个位置的最大匹配数量 */ int main() { int i, ans=0, sum=0; stack <int >sta; scanf("%s", str); int M = strlen(str); for(i = 0; i < M; i++) { if(str[i] == ‘(‘) sta.push(i); else if(sta.size()) { int top = sta.top(); sta.pop(); if(str[top-1] == ‘)‘) len[i] = (i-top+1) + len[top-1]; else len[i] = (i-top+1); ans = max(ans, len[i]); } } for(i = M-1; i >= 0; i--) { if(str[i] == ‘)‘ && len[i] && len[i] == ans) sum++; } if(sum == 0) sum = 1; printf("%d %d\n", ans, sum); return 0; }