python 生涯之常用模块 (二)

json & pickle 模块

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load

shelve 模块

shelve模块是一个简单的k,v将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式

import shelve

d = shelve.open(‘shelve_test‘) #打开一个文件 

class Test(object):
    def __init__(self,n):
        self.n = n

t = Test(123)
t2 = Test(123334)

name = ["alex","rain","test"]
d["test"] = name #持久化列表
d["t1"] = t      #持久化类
d["t2"] = t2

d.close()

xml处理模块

xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。

xml的格式如下,就是通过<>节点来区别数据结构的:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<?xml version="1.0"?>

<data>

    <country name="Liechtenstein">

        <rank updated="yes">2</rank>

        <year>2008</year>

        <gdppc>141100</gdppc>

        <neighbor name="Austria" direction="E"/>

        <neighbor name="Switzerland" direction="W"/>

    </country>

    <country name="Singapore">

        <rank updated="yes">5</rank>

        <year>2011</year>

        <gdppc>59900</gdppc>

        <neighbor name="Malaysia" direction="N"/>

    </country>

    <country name="Panama">

        <rank updated="yes">69</rank>

        <year>2011</year>

        <gdppc>13600</gdppc>

        <neighbor name="Costa Rica" direction="W"/>

        <neighbor name="Colombia" direction="E"/>

    </country>

</data>

xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml   

import xml.etree.ElementTree as ET

tree = ET.parse("xmltest.xml")
root = tree.getroot()
print(root.tag)

#遍历xml文档
for child in root:
    print(child.tag, child.attrib)
    for i in child:
        print(i.tag,i.text)

#只遍历year 节点
for node in root.iter(‘year‘):
    print(node.tag,node.text)

修改和删除xml文档内容

import xml.etree.ElementTree as ET

tree = ET.parse("xmltest.xml")
root = tree.getroot()

#修改
for node in root.iter(‘year‘):
    new_year = int(node.text) + 1
    node.text = str(new_year)
    node.set("updated","yes")

tree.write("xmltest.xml")

#删除node
for country in root.findall(‘country‘):
   rank = int(country.find(‘rank‘).text)
   if rank > 50:
     root.remove(country)

tree.write(‘output.xml‘)

自己创建xml文档

import xml.etree.ElementTree as ET

new_xml = ET.Element("namelist")
name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
age = ET.SubElement(name,"age",attrib={"checked":"no"})
sex = ET.SubElement(name,"sex")
sex.text = ‘33‘
name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
age = ET.SubElement(name2,"age")
age.text = ‘19‘

et = ET.ElementTree(new_xml) #生成文档对象
et.write("test.xml", encoding="utf-8",xml_declaration=True)

ET.dump(new_xml) #打印生成的格式 

ConfigParser模块

用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser。

来看一个好多软件的常见文档格式如下

[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes

[bitbucket.org]
User = hg

[topsecret.server.com]
Port = 50022
ForwardX11 = no

如果想用python生成一个这样的文档怎么做呢?

import configparser

config = configparser.ConfigParser()
config["DEFAULT"] = {‘ServerAliveInterval‘: ‘45‘,
                      ‘Compression‘: ‘yes‘,
                     ‘CompressionLevel‘: ‘9‘}

config[‘bitbucket.org‘] = {}
config[‘bitbucket.org‘][‘User‘] = ‘hg‘
config[‘topsecret.server.com‘] = {}
topsecret = config[‘topsecret.server.com‘]
topsecret[‘Host Port‘] = ‘50022‘     # mutates the parser
topsecret[‘ForwardX11‘] = ‘no‘  # same here
config[‘DEFAULT‘][‘ForwardX11‘] = ‘yes‘
with open(‘example.ini‘, ‘w‘) as configfile:
   config.write(configfile)

  

写完了还可以再读出来哈。

>>> import configparser
>>> config = configparser.ConfigParser()
>>> config.sections()
[]
>>> config.read(‘example.ini‘)
[‘example.ini‘]
>>> config.sections()
[‘bitbucket.org‘, ‘topsecret.server.com‘]
>>> ‘bitbucket.org‘ in config
True
>>> ‘bytebong.com‘ in config
False
>>> config[‘bitbucket.org‘][‘User‘]
‘hg‘
>>> config[‘DEFAULT‘][‘Compression‘]
‘yes‘
>>> topsecret = config[‘topsecret.server.com‘]
>>> topsecret[‘ForwardX11‘]
‘no‘
>>> topsecret[‘Port‘]
‘50022‘
>>> for key in config[‘bitbucket.org‘]: print(key)
...
user
compressionlevel
serveraliveinterval
compression
forwardx11
>>> config[‘bitbucket.org‘][‘ForwardX11‘]
‘yes‘

configparser增删改查语法

[section1]
k1 = v1
k2:v2

[section2]
k1 = v1

import ConfigParser

config = ConfigParser.ConfigParser()
config.read(‘i.cfg‘)

# ########## 读 ##########
#secs = config.sections()
#print secs
#options = config.options(‘group2‘)
#print options

#item_list = config.items(‘group2‘)
#print item_list

#val = config.get(‘group1‘,‘key‘)
#val = config.getint(‘group1‘,‘key‘)

# ########## 改写 ##########
#sec = config.remove_section(‘group1‘)
#config.write(open(‘i.cfg‘, "w"))

#sec = config.has_section(‘wupeiqi‘)
#sec = config.add_section(‘wupeiqi‘)
#config.write(open(‘i.cfg‘, "w"))

#config.set(‘group2‘,‘k1‘,11111)
#config.write(open(‘i.cfg‘, "w"))

#config.remove_option(‘group2‘,‘age‘)
#config.write(open(‘i.cfg‘, "w"))

hashlib模块  

用于加密相关的操作,3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法

import hashlib

m = hashlib.md5()
m.update(b"Hello")
m.update(b"It‘s me")
print(m.digest())
m.update(b"It‘s been a long time since last time we ...")

print(m.digest()) #2进制格式hash
print(len(m.hexdigest())) #16进制格式hash
‘‘‘
def digest(self, *args, **kwargs): # real signature unknown
    """ Return the digest value as a string of binary data. """
    pass

def hexdigest(self, *args, **kwargs): # real signature unknown
    """ Return the digest value as a string of hexadecimal digits. """
    pass

‘‘‘
import hashlib

# ######## md5 ########

hash = hashlib.md5()
hash.update(‘admin‘)
print(hash.hexdigest())

# ######## sha1 ########

hash = hashlib.sha1()
hash.update(‘admin‘)
print(hash.hexdigest())

# ######## sha256 ########

hash = hashlib.sha256()
hash.update(‘admin‘)
print(hash.hexdigest())

# ######## sha384 ########

hash = hashlib.sha384()
hash.update(‘admin‘)
print(hash.hexdigest())

# ######## sha512 ########

hash = hashlib.sha512()
hash.update(‘admin‘)
print(hash.hexdigest())

还不够吊?python 还有一个 hmac 模块,它内部对我们创建 key 和 内容 再进行处理然后再加密

散列消息鉴别码,简称HMAC,是一种基于消息鉴别码MAC(Message Authentication Code)的鉴别机制。使用HMAC时,消息通讯的双方,通过验证消息中加入的鉴别密钥K来鉴别消息的真伪;

一般用于网络通信中消息加密,前提是双方先要约定好key,就像接头暗号一样,然后消息发送把用key把消息加密,接收方用key + 消息明文再加密,拿加密后的值 跟 发送者的相对比是否相等,这样就能验证消息的真实性,及发送者的合法性了。

import hmac
h = hmac.new(b‘天王盖地虎‘, b‘宝塔镇河妖‘)
print h.hexdigest()

更多关于md5,sha1,sha256等介绍的文章看这里https://www.tbs-certificates.co.uk/FAQ/en/sha256.html

re模块

常用正则表达式符号

‘.‘		默认匹配除\n之外的任意一个字符,若指定flag DOTALL,则匹配任意字符,包括换行
‘^‘		匹配字符开头,若指定flags MULTILINE,这种也可以匹配上(r"^a","\nabc\neee",flags=re.MULTILINE)
‘$‘		匹配字符结尾,或e.search("foo$","bfoo\nsdfsf",flags=re.MULTILINE).group()也可以
‘*‘		匹配*号前的字符0次或多次,re.findall("ab*","cabb3abcbbac")  结果为[‘abb‘, ‘ab‘, ‘a‘]
‘+‘		匹配前一个字符1次或多次,re.findall("ab+","ab+cd+abb+bba") 结果[‘ab‘, ‘abb‘]
‘?‘		匹配前一个字符1次或0次
‘{m}‘	匹配前一个字符m次
‘{n,m}‘	匹配前一个字符n到m次,re.findall("ab{1,3}","abb abc abbcbbb") 结果‘abb‘, ‘ab‘, ‘abb‘]
‘|‘		匹配|左或|右的字符,re.search("abc|ABC","ABCBabcCD").group()	结果‘ABC‘
‘(...)‘ 分组匹配,re.search("(abc){2}a(123|456)c", "abcabca456c").group() 结果 abcabca456c

‘\A‘	只从字符开头匹配,re.search("\Aabc","alexabc") 是匹配不到的
‘\Z‘	匹配字符结尾,同$
‘\d‘	匹配数字0-9
‘\D‘	匹配非数字
‘\w‘	匹配[A-Za-z0-9]
‘\W‘	匹配非[A-Za-z0-9]
‘s‘		匹配空白字符、\t、\n、\r , re.search("\s+","ab\tc1\n3").group() 结果 ‘\t‘

‘(?P<name>...)‘ 分组匹配 re.search("(?P<province>[0-9]{4})(?P<city>[0-9]{2})(?P<birthday>[0-9]{4})","371481199306143242").groupdict("city") 结果{‘province‘: ‘3714‘, ‘city‘: ‘81‘, ‘birthday‘: ‘1993‘}

  

最常用的匹配语法

re.match 从头开始匹配
re.search 匹配包含
re.findall 把所有匹配到的字符放到以列表中的元素返回
re.splitall 以匹配到的字符当做列表分隔符
re.sub		匹配字符并替换

反斜杠的困扰
与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

仅需轻轻知道的几个匹配模式

re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
M(MULTILINE): 多行模式,改变‘^‘和‘$‘的行为(参见上图)
S(DOTALL): 点任意匹配模式,改变‘.‘的行为

原文地址:https://www.cnblogs.com/xuan-xue/p/9495364.html

时间: 2024-10-08 11:22:14

python 生涯之常用模块 (二)的相关文章

常用模块二---time--random--collections--json--pickle--shelve

常用模块二 ================= collections 模块 ================== ========= namedtuple 可以命名的元组 ============from collections import namedtuple Point=namedtuple('Point',['x','y']) p=Point(1,2)circle=namedtuple('Circle',['x','y','r'])c=circle(1,2,1)print(p.x)pr

常用模块二(configparser

阅读目录 常用模块二 hashlib模块 configparse模块 logging模块 常用模块二 返回顶部 hashlib模块 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示). 摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过. 摘要算法之所以能指出数

Python 运维常用模块

基础库:sys.os(os.path.os.stat).time.logging.prarmiko.re.random Python运维常用的20个库 1.psutil是一个跨平台库(https://github.com/giampaolo/psutil)能够实现获取系统运行的进程和系统利用率(内存,CPU,磁盘,网络等),主要用于系统监控,分析和系统资源及进程的管理. 2.IPy(http://github.com/haypo/python-ipy),辅助IP规划. 3.dnspython(h

python基础31[常用模块介绍]

python基础31[常用模块介绍] python除了关键字(keywords)和内置的类型和函数(builtins),更多的功能是通过libraries(即modules)来提供的. 常用的libraries(modules)如下: 1)python运行时服务 * copy: copy模块提供了对复合(compound)对象(list,tuple,dict,custom class)进行浅拷贝和深拷贝的功能. * pickle: pickle模块被用来序列化python的对象到bytes流,从

Python学习 :常用模块(二)

常用模块(二) 四.os模块 os模块是与操作系统交互的一个接口,用于对操作系统进行调用 os.getcwd() # 提供当前工作目录 os.chdir() # 改变当前工作目录 os.curdir() # 返回当前目录('.') os.pardir() # 获取当前目录的父目录字符串名('..') os.makedirs() # 生成多层递归目录('April\\Week1\\Day3') os.removedirs() # 从最里层往外删除空的文件夹,若文件夹为空,将会删除:若文件夹不为空,

Day5 - Python基础5 常用模块学习

Python 之路 Day5 - 常用模块学习 本节大纲: 模块介绍 time &datetime模块 random os sys shutil json & picle shelve xml处理 yaml处理 configparser hashlib subprocess logging模块 re正则表达式 模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,

Python学习笔记-常用模块

1.python模块 如果你退出 Python 解释器并重新进入,你做的任何定义(变量和方法)都会丢失.因此,如果你想要编写一些更大的程序,为准备解释器输入使用一个文本编辑器会更好,并以那个文件替代作为输入执行.这就是传说中的 脚本.随着你的程序变得越来越长,你可能想要将它分割成几个更易于维护的文件.你也可能想在不同的程序中使用顺手的函数,而不是把代码在它们之间中拷来拷去. 为了满足这些需要,Python 提供了一个方法可以从文件中获取定义,在脚本或者解释器的一个交互式实例中使用.这样的文件被称

python函数和常用模块(三),Day5

递归 反射 os模块 sys模块 hashlib加密模块 正则表达式 反射 python中的反射功能是由以下四个内置函数提供:hasattr.getattr.setattr.delattr,改四个函数分别用于对对象内部执行:检查是否含有某成员.获取成员.设置成员.删除成员. class Foo(object): def __init__(self): self.name = 'wupeiqi' def func(self): return 'func' obj = Foo() # #### 检查

Python学习 :常用模块(一)

常用模块(一) 一.时间(time)模块 时间戳 (Timestamp):时间戳表示的是从1970年1月1日00:00:00为计时起点,到当前的时间长度 import time print(help(time)) 查看time模块的官方说明 time.time() # 返回当前时间的时间戳 print(time.time()) >>> 1540191340.5649574 time.clock() # 计算CPU执行的时间 print(time.clock()) >>>