HDU4035 Maze(期望DP)

题意

抄袭自https://www.cnblogs.com/Paul-Guderian/p/7624039.html

有n个房间,由n-1条隧道连通起来,形成一棵树,从结点1出发,开始走,在每个结点i都有3种可能(概率之和为1):1.被杀死,回到结点1处(概率为ki)2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条求:走出迷宫所要走的边数的期望值。(2≤n≤10000)

Sol

非常nice的一道题。

我简单的说一下思路:首先列出方程,$f[i]$表示在第$i$个位置走出迷宫的期望步数。

转移方程分叶子节点和父亲节点讨论一下,发现都可以化成$f[x] = a f[1] + b f[fa] + c$的形式

然后直接递推系数即可

具体可以看https://www.cnblogs.com/Paul-Guderian/p/7624039.html

/*

*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<set>
#include<queue>
#include<cmath>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 1e5 + 10, INF = 1e9 + 10;
const double eps = 1e-10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < ‘0‘ || c > ‘9‘) {if(c == ‘-‘) f = -1; c = getchar();}
    while(c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘, c = getchar();
    return x * f;
}
int N;
vector<int> v[MAXN];
double b[MAXN], e[MAXN], A[MAXN], B[MAXN], C[MAXN];
bool dcmp(double x) {
    if(fabs(x) < eps) return 0;
    else return 1;
}
void init() {
    for(int i = 1; i <= N; i++) v[i].clear();
}
double Get(int x) {
    return (1 - b[x] - e[x]) / (v[x].size());
}
bool dfs(int x, int fa) {
    if(v[x].size() == 1 && (v[x][0] == fa)) {A[x] = b[x], C[x] = B[x] = Get(x); return 1;}
    double As = 0, Bs = 0, Cs = 0;
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        if(to == fa) continue;
        if(!dfs(to, x)) return 0;
        As += A[to]; Bs += B[to]; Cs += C[to] + 1;
    }
    double P = Get(x);
    double D = (1 - Bs * P);
    if(!dcmp(D)) return 0;
    A[x] = (b[x] + As * P) / D;
    B[x] = P / D;
    C[x] = (Cs * P + ((x == 1) ? 0 : P)) / D;
    return 1;
}
int main() {
    int T = read();
    for(int GG = 1; GG <= T; GG++) {
        N = read(); init();
        //printf("%d ", v[3].size());
        for(int i = 1; i <= N - 1; i++) {
            int x = read(), y = read();
            v[x].push_back(y); v[y].push_back(x);
        }
        for(int i = 1; i <= N; i++) b[i] = (double) read() / 100, e[i] = (double) read() / 100;
        if(dfs(1, 0) && (dcmp(1 - A[1]))) printf("Case %d: %.10lf\n", GG, C[1] / (1 - A[1]));
        else printf("Case %d: impossible\n", GG);
    }
    return 0;
}
/*

*/

原文地址:https://www.cnblogs.com/zwfymqz/p/9527740.html

时间: 2024-11-08 20:57:23

HDU4035 Maze(期望DP)的相关文章

hdu 4035 Maze(比较经典的树形期望DP)

Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Submission(s): 1677    Accepted Submission(s): 638 Special Judge Problem Description When wake up, lxhgww find himself in a huge maze. The maze consisted b

【bzoj4872】[Shoi2017]分手是祝愿 数论+期望dp

题目描述 Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏的目标是使所有灯都灭掉.但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮.B 君发现这个游戏很难,于是想到了这样的一个

HDOJ 1145 So you want to be a 2n-aire? 期望DP

期望DP So you want to be a 2n-aire? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 267    Accepted Submission(s): 197 Problem Description The player starts with a prize of $1, and is asked a seq

HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望. 由于有可能是什么也没有,所以我们要特殊判断一下.然后就和剩下的就简单了. 另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然

Topcoder SRM656div1 250 ( 期望DP )

Problem Statement    Charlie has N pancakes. He wants to serve some of them for breakfast. We will number the pancakes 0 through N-1. For each i, pancake i has width i+1 and deliciousness d[i].Charlie chooses the pancakes he is going to serve using t

期望dp 知识点

求期望dp有两种类型 1.概率dp 2.高斯消元 相关知识点可以看这里  一篇很好的文章  http://kicd.blog.163.com/blog/static/126961911200910168335852/ http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html 高斯消元  http://wenku.baidu.com/link?url=Q8ES7wreJk3et-VrHtp6CVNuyqX18YdB3c841-o

string (KMP+期望DP)

Time Limit: 1000 ms   Memory Limit: 256 MB Description  给定一个由且仅由字符 'H' , 'T' 构成的字符串$S$. 给定一个最初为空的字符串$T$ , 每次随机地在$T$的末尾添加 'H' 或者 'T' . 问当$S$为$T$的后缀时, 在末尾添加字符的期望次数. Input 输入只有一行, 一个字符串$S$. Output 输出只有一行, 一个数表示答案. 为了防止运算越界, 你只用将答案对$10^9+7$取模. Sample Inp

【期望DP】

[总览] [期望dp] 求解达到某一目标的期望花费:因为最终的花费无从知晓(不可能从$\infty$推起),所以期望dp需要倒序求解. 设$f[i][j]$表示在$(i, j)$这个状态实现目标的期望值(相当于是差距是多少). 首先$f[n][m] = 0$,在目标状态期望值为0.然后$f = (\sum f' × p) + w $,$f'$为上一状态(距离目标更近的那个,倒序),$p$为从$f$转移到$f'$的概率(则从$f'$转移回$f$的概率也为$p$),w为转移的花费. 最后输出初始位置

【BZOJ2510】弱题 期望DP+循环矩阵乘法

[BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < N),则将它重新标号为k + 1:若这个球标号为N,则将其重标号为1.(取出球后并不将其丢弃) 现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数. Input 第1行包含三个正整数N,M,K,表示了标号与球的个数以及操作次数. 第2行包含N个