机器学习(十三) 集成学习和随机森林(上)

一、什么是集成学习

二、Soft Voting Classifier

更合理的投票,应该有的权值

三、Bagging 和 Pasting

四、oob (Out-of-Bag) 和关于Bagging的更多讨论

原文地址:https://www.cnblogs.com/zhangtaotqy/p/9581237.html

时间: 2024-11-29 07:33:37

机器学习(十三) 集成学习和随机森林(上)的相关文章

机器学习(十三) 集成学习和随机森林(下)

五.随机森林和 Extra-Trees 六.Ada Boosting 和 Gradient Boosting 七.Stacking 八.学习scikit-learn文档, 官方学习文档: http://scikit-learn.org http://scikit-learn.org/stable/user_guide.html 今年,Kaggle刚刚上线了Kaggle Learn模块,使用Kaggle的数据,来一点点进行机器学习实战.可以参考:https://www.kaggle.com/lea

机器学习之集成学习和随机森林

一.集成学习 集成学习就是合并多个分类器的预测.一般会在一个项目快结束的时候使用集成算法,一旦建立了一些好的分类器,就可以使用集成把它们合并成一个更好的分类器.著名的集成方法:投票分类.bogging.pasting.boosting.stacking.和一些其它算法. 1.1 投票分类(少数服从多数) 令人惊奇的是这种投票分类器得出的结果经常会比集成中最好的一个分类器结果更好.事实上,即使每一个分类器都是一个弱学习器(意味着它们也就比瞎猜好点),集成后仍然是一个强学习器(高准确率),只要有足够

大白话5分钟带你走进人工智能-第二十八节集成学习之随机森林概念介绍(1)

                                                      第二十八节集成学习之随机森林概念介绍(1) 从本系列开始,我们讲解一个新的算法系列集成学习.集成学习其实是怎么样去应用决策树解决一些问题. 在机器学习领域集成学习是一种非常简单直接的提升分类器回归器预测效果的一种思路.决策树有一个困境,当层数太深的时候会有过拟合问题,当我不想过拟合,就通过预剪枝给它砍掉一部分深度,此时损失又容易太大了,导致在训练集上预测的又不怎么准.所以对于决策树很难去找

10.集成学习与随机森林

1.什么是集成学习 什么是集成学习,以前我们都是使用一个算法来进行预测,难免会有"独断专行"的感觉.集成学习是将多个算法集成在一块,然后多个算法对同一个问题进行预测,然后少数服从多数,这便是集成学习. 我们生活中有很多集成学习的例子,比如买东西的时候看推荐,如果10个人推荐你买A产品,但是只有1个人推荐你买B产品,我们会更将倾向于买B产品. 我们看看sklearn是如何为我们提供集成学习的接口的. from sklearn.datasets import make_moons from

集成学习 - 决策树-随机森林

认识 我觉得决策树+ 随机森林 应该是 ML 中最为重要的算法之一了吧, 反正我是很喜欢用的. 算法难度低, 可解释性很强, 能可视化 能处理非线性, 可扩展为随机森林(集成学习) 建立决策树的判别依据有很多, 比较主流的有经典的 ID3 算法(熵), C4.5 , 基尼系数等. 我是这种基于熵的理解了, 上学时学过熵的概念, 在<> 和 <> 有讲到. 其余的也没仔细看, 暂时能深入理解一个就可以了. 信息熵 衡量信息的不确定性 或 混乱程度的指标 不确定性越大, 则熵值越大 直

R语言︱机器学习模型评估方案(以随机森林算法为例)

R语言︱机器学习模型评估方案(以随机森林算法为例) 笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖

机器学习实战之 第七章 集成方法(随机森林和 AdaBoost)

第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于

机器学习算法--集成学习

1. 个体和集成 集成学习通过构建并结合多个"个体学习器"来完成学习任务.个体学习器通常由一个现有的学习算法从训练数据产生,若集成中只包含同种类型的个体学习器,称为同质集成:若包含不同类型的个体学习器,为异质集成.同质集成中的个体学习器也成为"基学习器". 如何产生并结合"好而不同"的个体学习器,恰是集成学习研究的核心. 根据个体学习器的生成方式,目前的集成学习方法大致分为两大类: (1)个体学习器间存在强依赖关系,必须串行生成的序列化方法,代表

机器学习之集成学习(一)

详细参考:https://www.cnblogs.com/pinard/p/6131423.html 首先明确集成学习它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务. 集成学习有两个主要的问题需要解决,第一是如何得到若干个个体学习器,第二是如何选择一种结合策略,将这些个体学习器集合成一个强学习器.对于个体学习器第一种就是所有的个体学习器都是一个种类的,或者说是同质的.比如都是决策树个体学习器,或者都是神经网络个体学习器.第二种是所有的个体学习器不全是一个种类的,