kafka 基础介绍

kafka 基础

kafka有四个核心API:
  • 应用程序使用 Producer API 发布消息到1个或多个topic(主题)。
  • 应用程序使用 Consumer API 来订阅一个或多个topic,并处理产生的消息。
  • 应用程序使用 Streams API 充当一个流处理器,从1个或多个topic消费输入流,并生产一个输出流到1个或多个输出topic,有效地将输入流转换到输出流。
  • Connector API允许构建或运行可重复使用的生产者或消费者,将topic连接到现有的应用程序或数据系统。例如,一个关系数据库的连接器可捕获每一个变化。

Client和Server之间的通讯,是通过一条简单、高性能并且和开发语言无关的TCP协议。除了Java Client外,还有非常多的其它编程语言的Client

Kafka所使用的基本术语:

Topic

Kafka将消息种子(Feed)分门别类,每一类的消息称之为一个主题(Topic).

Producer

发布消息的对象称之为主题生产者(Kafka topic producer)

Consumer

订阅消息并处理发布的消息的种子的对象称之为主题消费者(consumers)

Broker

已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker). 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

话题和日志  (Topic和Log)

让我们更深入的了解Kafka中的Topic。

Topic是发布的消息的类别或者种子Feed名。对于每一个Topic,Kafka集群维护这一个分区的log,就像下图中的示例:

每一个分区都是一个顺序的、不可变的消息队列, 并且可以持续的添加。分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。

Kafka集群保持所有的消息,直到它们过期, 无论消息是否被消费了。 实际上消费者所持有的仅有的元数据就是这个偏移量,也就是消费者在这个log中的位置。 这个偏移量由消费者控制:正常情况当消费者消费消息的时候,偏移量也线性的的增加。但是实际偏移量由消费者控制,消费者可以将偏移量重置为更老的一个偏移量,重新读取消息。 可以看到这种设计对消费者来说操作自如, 一个消费者的操作不会影响其它消费者对此log的处理。 再说说分区。Kafka中采用分区的设计有几个目的。一是可以处理更多的消息,不受单台服务器的限制。Topic拥有多个分区意味着它可以不受限的处理更多的数据。第二,分区可以作为并行处理的单元,稍后会谈到这一点。

分布式(Distribution)

Log的分区被分布到集群中的多个服务器上。每个服务器处理它分到的分区。 根据配置每个分区还可以复制到其它服务器作为备份容错。 每个分区有一个leader,零或多个follower。Leader处理此分区的所有的读写请求,而follower被动的复制数据。如果leader宕机,其它的一个follower会被推举为新的leader。 一台服务器可能同时是一个分区的leader,另一个分区的follower。 这样可以平衡负载,避免所有的请求都只让一台或者某几台服务器处理。

生产者(Producers)

生产者往某个Topic上发布消息。生产者也负责选择发布到Topic上的哪一个分区。最简单的方式从分区列表中轮流选择。也可以根据某种算法依照权重选择分区。开发者负责如何选择分区的算法。

消费者(Consumers)

通常来讲,消息模型可以分为两种, 队列和发布-订阅式。 队列的处理方式是 一组消费者从服务器读取消息,一条消息只有其中的一个消费者来处理。在发布-订阅模型中,消息被广播给所有的消费者,接收到消息的消费者都可以处理此消息。Kafka为这两种模型提供了单一的消费者抽象模型: 消费者组 (consumer group)。 消费者用一个消费者组名标记自己。 一个发布在Topic上消息被分发给此消费者组中的一个消费者。 假如所有的消费者都在一个组中,那么这就变成了queue模型。 假如所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型。 更通用的, 我们可以创建一些消费者组作为逻辑上的订阅者。每个组包含数目不等的消费者, 一个组内多个消费者可以用来扩展性能和容错。正如下图所示:

2个kafka集群托管4个分区(P0-P3),2个消费者组,消费组A有2个消费者实例,消费组B有4个。

正像传统的消息系统一样,Kafka保证消息的顺序不变。 再详细扯几句。传统的队列模型保持消息,并且保证它们的先后顺序不变。但是, 尽管服务器保证了消息的顺序,消息还是异步的发送给各个消费者,消费者收到消息的先后顺序不能保证了。这也意味着并行消费将不能保证消息的先后顺序。用过传统的消息系统的同学肯定清楚,消息的顺序处理很让人头痛。如果只让一个消费者处理消息,又违背了并行处理的初衷。 在这一点上Kafka做的更好,尽管并没有完全解决上述问题。 Kafka采用了一种分而治之的策略:分区。 因为Topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

Kafka的保证(Guarantees)

  • 生产者发送到一个特定的Topic的分区上,消息将会按照它们发送的顺序依次加入,也就是说,如果一个消息M1和M2使用相同的producer发送,M1先发送,那么M1将比M2的offset低,并且优先的出现在日志中。
  • 消费者收到的消息也是此顺序。
  • 如果一个Topic配置了复制因子(replication facto)为N, 那么可以允许N-1服务器宕机而不丢失任何已经提交(committed)的消息。

有关这些保证的更多详细信息,请参见文档的设计部分。

kafka作为一个消息系统

Kafka的流与传统企业消息系统相比的概念如何?

传统的消息有两种模式:队列发布订阅。 在队列模式中,消费者池从服务器读取消息(每个消息只被其中一个读取); 发布订阅魔兽:消息广播给所有的消费者。这两种模式都有优缺点,队列的优点是允许多个消费者瓜分处理数据,这样可以扩展处理。但是,队列不像多个订阅者,一旦消息者进程读取后故障了,那么消息就丢了。而发布和订阅允许你广播数据到多个消费者,由于每个订阅者都订阅了消息,所以没办法缩放处理。

kafka中消费者组有两个概念:队列:消费者组(consumer group)允许同名的消费者组成员瓜分处理。发布订阅:允许你广播消息给多个消费者组(不同名)。

kafka的每个topic都具有这两种模式。

kafka有比传统的消息系统更强的顺序保证。

传统的消息系统按顺序保存数据,如果多个消费者从队列消费,则服务器按存储的顺序发送消息,但是,尽管服务器按顺序发送,消息异步传递到消费者,因此消息可能乱序到达消费者。这意味着消息存在并行消费的情况,顺序就无法保证。消息系统常常通过仅设1个消费者来解决这个问题,但是这意味着没用到并行处理。

kafka做的更好。通过并行topic的parition —— kafka提供了顺序保证和负载均衡。每个partition仅由同一个消费者组中的一个消费者消费到。并确保消费者是该partition的唯一消费者,并按顺序消费数据。每个topic有多个分区,则需要对多个消费者做负载均衡,但请注意,相同的消费者组中不能有比分区更多的消费者,否则多出的消费者一直处于空等待,不会收到消息

kafka作为一个存储系统

所有发布消息到消息队列和消费分离的系统,实际上都充当了一个存储系统(发布的消息先存储起来)。Kafka比别的系统的优势是它是一个非常高性能的存储系统

写入到kafka的数据将写到磁盘并复制到集群中保证容错性。并允许生产者等待消息应答,直到消息完全写入。

kafka的磁盘结构 - 无论你服务器上有50KB或50TB,执行是相同的。

client来控制读取数据的位置。你还可以认为kafka是一种专用于高性能,低延迟,提交日志存储,复制,和传播特殊用途的分布式文件系统

kafka的流处理

仅仅读,写和存储是不够的,kafka的目标是实时的流处理。

在kafka中,流处理持续获取输入topic的数据,进行处理加工,然后写入输出topic。例如,一个零售APP,接收销售和出货的输入流,统计数量或调整价格后输出。

可以直接使用producer和consumer API进行简单的处理。对于复杂的转换,Kafka提供了更强大的Streams API。可构建聚合计算连接流到一起的复杂应用程序。

助于解决此类应用面临的硬性问题:处理无序的数据,代码更改的再处理,执行状态计算等。

Sterams API在Kafka中的核心:使用producer和consumer API作为输入,利用Kafka做状态存储,使用相同的组机制在stream处理器实例之间进行容错保障。

拼在一起

消息传递,存储和流处理的组合看似反常,但对于Kafka作为流式处理平台的作用至关重要。

像HDFS这样的分布式文件系统允许存储静态文件来进行批处理。这样系统可以有效地存储和处理来自过去的历史数据。

传统企业的消息系统允许在你订阅之后处理未来的消息:在未来数据到达时处理它。

Kafka结合了这两种能力,这种组合对于kafka作为流处理应用和流数据管道平台是至关重要的。

批处理以及消息驱动应用程序的流处理的概念:通过组合存储和低延迟订阅,流处理应用可以用相同的方式对待过去和未来的数据。它是一个单一的应用程序,它可以处理历史的存储数据,当它处理到最后一个消息时,它进入等待未来的数据到达,而不是结束。

同样,对于流数据管道(pipeline),订阅实时事件的组合使得可以将Kafka用于非常低延迟的管道;但是,可靠地存储数据的能力使得它可以将其用于必须保证传递的关键数据,或与仅定期加载数据或长时间维护的离线系统集成在一起。流处理可以在数据到达时转换它。

下面是一些关于Apache kafka的使用场景

消息

kafka更好的替换传统的消息系统,消息系统被用于各种场景(解耦数据生产者,缓存未处理的消息,等),与大多数消息系统比较,kafka有更好的吞吐量,内置分区,副本和故障转移,这有利于处理大规模的消息。

根据我们的经验,消息往往用于较低的吞吐量,但需要低的端到端延迟,并需要提供强大的耐用性的保证。

在这一领域的kafka比得上传统的消息系统,如的ActiveMQRabbitMQ的。

网站活动追踪

kafka原本的使用场景:用户的活动追踪,网站的活动(网页游览,搜索或其他用户的操作信息)发布到不同的话题中心,这些消息可实时处理,实时监测,也可加载到Hadoop或离线处理数据仓库。

每个用户页面视图都会产生非常高的量。

指标

kafka也常常用于监测数据。分布式应用程序生成的统计数据集中聚合。

日志聚合

使用kafka代替一个日志聚合的解决方案。

流处理

kafka消息处理包含多个阶段。其中原始输入数据是从kafka主题消费的,然后汇总,丰富,或者以其他的方式处理转化为新主题,例如,一个推荐新闻文章,文章内容可能从“articles”主题获取;然后进一步处理内容,得到一个处理后的新内容,最后推荐给用户。这种处理是基于单个主题的实时数据流。从0.10.0.0开始,轻量,但功能强大的流处理,就进行这样的数据处理了。

除了Kafka Streams,还有Apache Storm和Apache Samza可选择。

事件采集

事件采集是一种应用程序的设计风格,其中状态的变化根据时间的顺序记录下来,kafka支持这种非常大的存储日志数据的场景。

提交日志

kafka可以作为一种分布式的外部提交日志,日志帮助节点之间复制数据,并作为失败的节点来恢复数据重新同步,kafka的日志压缩功能很好的支持这种用法,这种用法类似于Apacha BookKeeper项目。

时间: 2024-10-26 05:10:24

kafka 基础介绍的相关文章

消息队列之kafka(基础介绍)

一.关于JMS 1. JMS 的基础 ??JMS是Java提供的一套技术规范.即Java消息服务(Java message service).应用程序接口.是一个Java平台中关于面向消息中间件的API.用于在两个应用程序之间或者分布式系统中发送消息,进行异步通信.Java消息服务是一个与具体平台无关的API.??用来异构系统集成通信,缓解系统瓶颈. 提高系统的伸缩性.增强系统用户体验.使得系统模块化和组件化变得可行并更加灵活.JAVA2EE十三大规范:https://blog.csdn.net

Kafka入门介绍

1. Kafka入门介绍 1.1 Apache Kafka是一个分布式的流平台.这到底意味着什么? 我们认为,一个流平台具有三个关键能力: ① 发布和订阅消息.在这方面,它类似一个消息队列或企业消息系统.(生产和消费消息) ② 以容错的方式存储消息流.(存储消息) ③ 当消息流发生时处理它们.(处理消息) 1.1.1 kafka的优势 它应用于两大类应用: ① 构建实时的流数据管道,可靠地获取系统和应用程序之间的数据.(获取数据) ② 构建实时流的应用程序,对数据流进行转换或反应.(处理数据)

SpringCloud基础介绍

SpringCloud基础介绍 什么是微服务 "微服务"一词来源于Martin Fowler 的一篇博文,https://martinfowler.com/articles/microservices.html 总结地说下,微服务是系统架构设计上的一种风格,旨在将一个多元化的大系统拆分成一个一个可以独立部署的小型服务,服务之间通过HTPP进行通信.这些服务围绕着业务功能构建,并且每个服务都维护着自身的数据存储,业务开发,自动化测试以及全自动机制独立部署. 注意:微服务架构并不是考虑的开

【转帖】Kafka入门介绍

https://www.cnblogs.com/swordfall/p/8251700.html 最近在看hdoop的hdfs 以及看了下kafka的底层存储,发现分布式的技术基本上都是相同的. 都是通过增加一个coordinator的节点作为存储元数据, 将实体数据放到datanode 里面来提高容量.而且也跟微服务类似,将一个单体应用拆开分多份,放到不同的node节点中来 并且通过replication 来保证高可用.通过服务注册中心统一进行管理. 微服务 hadoop kafka 都是通过

【简译】jQuery对象的奥秘:基础介绍

本文翻译自此文章 你有没有遇到过类似$(".cta").click(function(){})这样的JavaScript代码并且在想“$('#x')是什么”?如果这些对你想天书一样,请往下读.如果你认为这些代码不可能是真的,请浏览一些jQuery例子,他们都是这种结构. 这篇文章覆盖了像下面一样吓人的代码片段中涉及的关键概念.我们以一个长例子开始,这个长例子是基于一个让一个正方形运动的简单例子(a simple example of animating a square).你可能不需要

Zabbix 3.0 基础介绍 [一]

Zabbix 3.0 基础介绍 [一] zabbix 一.Zabbix介绍 zabbix 简介   Zabbix 是一个高度集成的网络监控解决方案,可以提供企业级的开源分布式监控解决方案,由一个国外的团队持续维护更新,软件可以自由下载使用,运作团队靠提供收费的技术支持赢利   zabbix是一个基于Web界面的,提供分布式系统监控以及网络监视功能的企业级的开源解决方案.   zabbix能监视各种网络参数,保证服务器系统的安全运营,并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题

【OpenGL】“我叫MT”纯手工3D动画制作之1——基础介绍

最近在家研习面经,温习基础,索性花些时间将本科期间完成的一些学习之作整理出来,分享之余顺便水点经验 其实这个事情起源于一门“计算机图形与动画(Computer Graphics & Animation)”的外方课程,当初的外籍教师Tony教的很认真,对于这门课自己也投入了非常多的时间.言归正传,这里先介绍一些涉及的技术,熟悉的同学请跳过哈~ A.几何物体建模 带阴影的后面我会介绍到的哦~ 加下划线的后面我后面会举栗子的哦~ B.涉及的图形学技术与应用 C.动画技术 参考文献 1.王汝传,张登银,

qt model/view 架构基础介绍之QTreeWidget

# -*- coding: utf-8 -*- # python:2.x #说明:QTreeWidget用于展示树型结构,也就是层次结构同前面说的 QListWidget 类似,这个类需要同另外一个辅助类 # QTreeWidgetItem 一起使用.不过,既然是提供方面的封装类,即便是看上去很复杂的树, # 在使用这个类的时候也是显得比较简单的 __author__ = 'Administrator' from PyQt4.QtGui import  * from PyQt4.Qt impor

qt model/view 架构基础介绍之QTableWidget

# -*- coding: utf-8 -*- # python:2.x #说明:QTreeWidget用于展示树型结构,也就是层次结构同前面说的 QListWidget 类似,这个类需要同另外一个辅助类 # QTreeWidgetItem 一起使用.不过,既然是提供方面的封装类,即便是看上去很复杂的树, # 在使用这个类的时候也是显得比较简单的 __author__ = 'Administrator' from PyQt4.QtGui import  * from PyQt4.Qt impor