Nginx源码分析 - 主流程篇 - 多进程实现

默认情况下,Nginx都是多进程的运行模式。Nginx和Memcached不一样,是多进程的模式。采用多进程模式最大的好处:

1. 每个进程的资源独立

2. 不需要添加各种繁琐的锁了

Nginx多进程实现的流程图

Nginx多进程具体实现

1. ngx_master_process_cycle 进入多进程模式

ngx_master_process_cycle方法主要做了两个工作:

1. 主进程进行信号的监听和处理

2. 开启子进程

/**
 * Nginx的多进程运行模式
 */
void ngx_master_process_cycle(ngx_cycle_t *cycle) {
	char *title;
	u_char *p;
	size_t size;
	ngx_int_t i;
	ngx_uint_t n, sigio;
	sigset_t set;
	struct itimerval itv;
	ngx_uint_t live;
	ngx_msec_t delay;
	ngx_listening_t *ls;
	ngx_core_conf_t *ccf;

	/* 设置能接收到的信号 */
	sigemptyset(&set);
	sigaddset(&set, SIGCHLD);
	sigaddset(&set, SIGALRM);
	sigaddset(&set, SIGIO);
	sigaddset(&set, SIGINT);
	sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));
	sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));
	sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));
	sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));
	sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
	sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));

	if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {
		ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
				"sigprocmask() failed");
	}

	sigemptyset(&set);

	size = sizeof(master_process);

	for (i = 0; i < ngx_argc; i++) {
		size += ngx_strlen(ngx_argv[i]) + 1;
	}

	/* 保存进程标题 */
	title = ngx_pnalloc(cycle->pool, size);
	if (title == NULL) {
		/* fatal */
		exit(2);
	}

	p = ngx_cpymem(title, master_process, sizeof(master_process) - 1);
	for (i = 0; i < ngx_argc; i++) {
		*p++ = ‘ ‘;
		p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size);
	}

	ngx_setproctitle(title);

	/* 获取核心配置 ngx_core_conf_t */
	ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);

	/* 启动工作进程 - 多进程启动的核心函数 */
	ngx_start_worker_processes(cycle, ccf->worker_processes,
			NGX_PROCESS_RESPAWN);
	ngx_start_cache_manager_processes(cycle, 0);

	ngx_new_binary = 0;
	delay = 0;
	sigio = 0;
	live = 1;

	/* 主线程循环 */
	for (;;) {

		/* delay用来设置等待worker推出的时间,master接受了退出信号后,
		 * 首先发送退出信号给worker,而worker退出需要一些时间*/
		if (delay) {
			if (ngx_sigalrm) {
				sigio = 0;
				delay *= 2;
				ngx_sigalrm = 0;
			}

			ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
					"termination cycle: %M", delay);

			itv.it_interval.tv_sec = 0;
			itv.it_interval.tv_usec = 0;
			itv.it_value.tv_sec = delay / 1000;
			itv.it_value.tv_usec = (delay % 1000) * 1000;

			if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {
				ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
						"setitimer() failed");
			}
		}

		ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend");

		/* 等待信号的到来,阻塞函数 */
		sigsuspend(&set);

		ngx_time_update();

		ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
				"wake up, sigio %i", sigio);

		/* 收到了SIGCHLD信号,有worker退出(ngx_reap == 1) */
		if (ngx_reap) {
			ngx_reap = 0;
			ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children");

			live = ngx_reap_children(cycle);
		}

		if (!live && (ngx_terminate || ngx_quit)) {
			ngx_master_process_exit(cycle);
		}

		/* 中止进程  */
		if (ngx_terminate) {
			if (delay == 0) {
				delay = 50;
			}

			if (sigio) {
				sigio--;
				continue;
			}

			sigio = ccf->worker_processes + 2 /* cache processes */;

			if (delay > 1000) {
				ngx_signal_worker_processes(cycle, SIGKILL);
			} else {
				ngx_signal_worker_processes(cycle,
						ngx_signal_value(NGX_TERMINATE_SIGNAL));
			}

			continue;
		}

		/* 退出进程 */
		if (ngx_quit) {
			ngx_signal_worker_processes(cycle,
					ngx_signal_value(NGX_SHUTDOWN_SIGNAL));

			ls = cycle->listening.elts;
			for (n = 0; n < cycle->listening.nelts; n++) {
				if (ngx_close_socket(ls[n].fd) == -1) {
					ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno,
							ngx_close_socket_n " %V failed", &ls[n].addr_text);
				}
			}
			cycle->listening.nelts = 0;

			continue;
		}

		/* 收到SIGHUP信号 重新初始化配置 */
		if (ngx_reconfigure) {
			ngx_reconfigure = 0;

			if (ngx_new_binary) {
				ngx_start_worker_processes(cycle, ccf->worker_processes,
						NGX_PROCESS_RESPAWN);
				ngx_start_cache_manager_processes(cycle, 0);
				ngx_noaccepting = 0;

				continue;
			}

			ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");

			cycle = ngx_init_cycle(cycle);
			if (cycle == NULL) {
				cycle = (ngx_cycle_t *) ngx_cycle;
				continue;
			}

			ngx_cycle = cycle;
			ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,
					ngx_core_module);
			ngx_start_worker_processes(cycle, ccf->worker_processes,
					NGX_PROCESS_JUST_RESPAWN);
			ngx_start_cache_manager_processes(cycle, 1);

			/* allow new processes to start */
			ngx_msleep(100);

			live = 1;
			ngx_signal_worker_processes(cycle,
					ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
		}

		/* 当ngx_noaccepting==1时,会把ngx_restart设为1,重启worker  */
		if (ngx_restart) {
			ngx_restart = 0;
			ngx_start_worker_processes(cycle, ccf->worker_processes,
					NGX_PROCESS_RESPAWN);
			ngx_start_cache_manager_processes(cycle, 0);
			live = 1;
		}

		/* 收到SIGUSR1信号,重新打开log文件 */
		if (ngx_reopen) {
			ngx_reopen = 0;
			ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
			ngx_reopen_files(cycle, ccf->user);
			ngx_signal_worker_processes(cycle,
					ngx_signal_value(NGX_REOPEN_SIGNAL));
		}

		/* SIGUSER2,热代码替换 */
		if (ngx_change_binary) {
			ngx_change_binary = 0;
			ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary");
			ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv);
		}

		/* 收到SIGWINCH信号不在接受请求,worker退出,master不退出 */
		if (ngx_noaccept) {
			ngx_noaccept = 0;
			ngx_noaccepting = 1;
			ngx_signal_worker_processes(cycle,
					ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
		}
	}
}

2. ngx_start_worker_processes 创建工作进程

通过循环创建N个子进程。每个子进程都有独立的内存空间。

子进程的个数由Nginx的配置:ccf->worker_processes决定

/**
 * 创建工作进程
 */
static void ngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n,
		ngx_int_t type) {
	ngx_int_t i;
	ngx_channel_t ch;

	ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes");

	ngx_memzero(&ch, sizeof(ngx_channel_t));

	ch.command = NGX_CMD_OPEN_CHANNEL;

	/* 循环创建工作进程  默认ccf->worker_processes=8个进程,根据CPU个数决定   */
	for (i = 0; i < n; i++) {

		/* 打开工作进程  (ngx_worker_process_cycle 回调函数,主要用于处理每个工作线程)*/
		ngx_spawn_process(cycle, ngx_worker_process_cycle,
				(void *) (intptr_t) i, "worker process", type);

		ch.pid = ngx_processes[ngx_process_slot].pid;
		ch.slot = ngx_process_slot;
		ch.fd = ngx_processes[ngx_process_slot].channel[0];

		ngx_pass_open_channel(cycle, &ch);
	}
}

3. ngx_spawn_process fork工作进程

ngx_spawn_process方法主要用于fork出各个工作进程。具体主要看fork过程的代码。

    /* fork 一个子进程 */
    pid = fork();

    switch (pid) {

    case -1:
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "fork() failed while spawning \"%s\"", name);
        ngx_close_channel(ngx_processes[s].channel, cycle->log);
        return NGX_INVALID_PID;

    case 0:
    	/* 如果pid fork成功,则调用 ngx_worker_process_cycle方法 */
        ngx_pid = ngx_getpid();
        proc(cycle, data);
        break;

    default:
        break;
    }

4. ngx_worker_process_cycle 子进程的回调函数

ngx_worker_process_cycle为子进程的回调函数,一切子进程的工作从这个方法开始。

Nginx的进程最终也是有事件驱动的,所有这个方法中,最终会调用ngx_process_events_and_timers事件驱动的核心函数。

/**
 * 子进程 回调函数
 * 每个进程的逻辑处理就从这个方法开始
 */
static void ngx_worker_process_cycle(ngx_cycle_t *cycle, void *data) {
	ngx_int_t worker = (intptr_t) data;

	ngx_process = NGX_PROCESS_WORKER;
	ngx_worker = worker;

	/* 工作进程初始化 */
	ngx_worker_process_init(cycle, worker);

	ngx_setproctitle("worker process");

	/* 进程循环 */
	for (;;) {

		/* 判断是否是退出的状态,如果退出,则需要清空socket连接句柄 */
		if (ngx_exiting) {
			ngx_event_cancel_timers();

			if (ngx_event_timer_rbtree.root
					== ngx_event_timer_rbtree.sentinel) {
				ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");

				ngx_worker_process_exit(cycle);
			}
		}

		ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle");

		/* 事件驱动核心函数 */
		ngx_process_events_and_timers(cycle);

		if (ngx_terminate) {
			ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");

			ngx_worker_process_exit(cycle);
		}

		/* 如果是退出 */
		if (ngx_quit) {
			ngx_quit = 0;
			ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,
					"gracefully shutting down");
			ngx_setproctitle("worker process is shutting down");

			if (!ngx_exiting) {
				ngx_exiting = 1;
				ngx_close_listening_sockets(cycle);
				ngx_close_idle_connections(cycle);
			}
		}

		/* 如果是重启 */
		if (ngx_reopen) {
			ngx_reopen = 0;
			ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
			ngx_reopen_files(cycle, -1);
		}
	}
}

5. ngx_worker_process_init 工作进程初始化

/**
 * 工作进程初始化
 */
static void ngx_worker_process_init(ngx_cycle_t *cycle, ngx_int_t worker) {
	sigset_t set;
	ngx_int_t n;
	ngx_uint_t i;
	ngx_cpuset_t *cpu_affinity;
	struct rlimit rlmt;
	ngx_core_conf_t *ccf;
	ngx_listening_t *ls;

	/* 配置环境变量 */
	if (ngx_set_environment(cycle, NULL) == NULL) {
		/* fatal */
		exit(2);
	}

	/* 获取核心配置 */
	ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);

	if (worker >= 0 && ccf->priority != 0) {
		if (setpriority(PRIO_PROCESS, 0, ccf->priority) == -1) {
			ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
					"setpriority(%d) failed", ccf->priority);
		}
	}

	if (ccf->rlimit_nofile != NGX_CONF_UNSET) {
		rlmt.rlim_cur = (rlim_t) ccf->rlimit_nofile;
		rlmt.rlim_max = (rlim_t) ccf->rlimit_nofile;

		if (setrlimit(RLIMIT_NOFILE, &rlmt) == -1) {
			ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
					"setrlimit(RLIMIT_NOFILE, %i) failed", ccf->rlimit_nofile);
		}
	}

	if (ccf->rlimit_core != NGX_CONF_UNSET) {
		rlmt.rlim_cur = (rlim_t) ccf->rlimit_core;
		rlmt.rlim_max = (rlim_t) ccf->rlimit_core;

		if (setrlimit(RLIMIT_CORE, &rlmt) == -1) {
			ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
					"setrlimit(RLIMIT_CORE, %O) failed", ccf->rlimit_core);
		}
	}

	/* 设置UID GROUPUID */
	if (geteuid() == 0) {
		if (setgid(ccf->group) == -1) {
			ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno,
					"setgid(%d) failed", ccf->group);
			/* fatal */
			exit(2);
		}

		if (initgroups(ccf->username, ccf->group) == -1) {
			ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno,
					"initgroups(%s, %d) failed", ccf->username, ccf->group);
		}

		if (setuid(ccf->user) == -1) {
			ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno,
					"setuid(%d) failed", ccf->user);
			/* fatal */
			exit(2);
		}
	}

	/* 设置CPU亲和性 */
	if (worker >= 0) {
		cpu_affinity = ngx_get_cpu_affinity(worker);

		if (cpu_affinity) {
			ngx_setaffinity(cpu_affinity, cycle->log);
		}
	}

#if (NGX_HAVE_PR_SET_DUMPABLE)

	/* allow coredump after setuid() in Linux 2.4.x */

	if (prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) == -1) {
		ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
				"prctl(PR_SET_DUMPABLE) failed");
	}

#endif

	/* 切换工作目录 */
	if (ccf->working_directory.len) {
		if (chdir((char *) ccf->working_directory.data) == -1) {
			ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
					"chdir(\"%s\") failed", ccf->working_directory.data);
			/* fatal */
			exit(2);
		}
	}

	sigemptyset(&set);

	/* 清除所有信号 */
	if (sigprocmask(SIG_SETMASK, &set, NULL) == -1) {
		ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
				"sigprocmask() failed");
	}

	srandom((ngx_pid << 16) ^ ngx_time());

	/*
	 * disable deleting previous events for the listening sockets because
	 * in the worker processes there are no events at all at this point
	 */
	/* 清除sokcet的监听 */
	ls = cycle->listening.elts;
	for (i = 0; i < cycle->listening.nelts; i++) {
		ls[i].previous = NULL;
	}

	/* 对模块初始化  */
	for (i = 0; cycle->modules[i]; i++) {
		if (cycle->modules[i]->init_process) {
			if (cycle->modules[i]->init_process(cycle) == NGX_ERROR) {
				/* fatal */
				exit(2);
			}
		}
	}

	/**
	 *将其他进程的channel[1]关闭,自己的channel[0]关闭
	 */
	for (n = 0; n < ngx_last_process; n++) {

		if (ngx_processes[n].pid == -1) {
			continue;
		}

		if (n == ngx_process_slot) {
			continue;
		}

		if (ngx_processes[n].channel[1] == -1) {
			continue;
		}

		if (close(ngx_processes[n].channel[1]) == -1) {
			ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
					"close() channel failed");
		}
	}

	if (close(ngx_processes[ngx_process_slot].channel[0]) == -1) {
		ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
				"close() channel failed");
	}

#if 0
	ngx_last_process = 0;
#endif

	/**
	 * 给ngx_channel注册一个读事件处理函数
	 */
	if (ngx_add_channel_event(cycle, ngx_channel, NGX_READ_EVENT,
			ngx_channel_handler) == NGX_ERROR) {
		/* fatal */
		exit(2);
	}
}

下一章节,我们会讲解Nginx的惊群和进程间的负载均衡处理。

时间: 2024-10-13 19:15:31

Nginx源码分析 - 主流程篇 - 多进程实现的相关文章

Nginx源码分析 - 主流程篇 - 多进程的惊群和进程负载均衡处理

Linux2.6版本之前还存在对于socket的accept的惊群现象.之后的版本已经解决掉了这个问题. 惊群是指多个进程/线程在等待同一资源时,每当资源可用,所有的进程/线程都来竞争资源的现象. Nginx采用的是多进程的模式.假设Linux系统是2.6版本以前,当有一个客户端要连到Nginx服务器上,Nginx的N个进程都会去监听socket的accept的,如果全部的N个进程都对这个客户端的socket连接进行了监听,就会造成资源的竞争甚至数据的错乱.我们要保证的是,一个链接在Nginx的

Nginx源码分析 - 主流程篇 - 全局变量cycle初始化

Nginx的大部分初始化工作主要围绕一个类型为ngx_cycle_t类型的全局变量(cycle)展开.本文主要讲解cycle的数据结构以及初始化过程中干了什么事情. cycle的初始化过程在/src/core/cycle.c文件中. 数据结构 ngx_cycle_t的数据结构 /** * Nginx全局变量cycle */ struct ngx_cycle_s { void ****conf_ctx; /* 配置文件 上下文的数组,每个模块的配置信息*/ ngx_pool_t *pool; /*

nginx源码分析--模块分类

ngx-modules Nginx 主要的模块大致可以分为四类: handler – 协同完成客户端请求的处理.产生响应数据.比如模块, ngx_http_rewrite_module, ngx_http_log_module, ngx_http_static_module. filter – 对 handler 产生的响应数据做各种过滤处理.比如模块, ngx_http_not_modified_filter_module, ngx_http_header_filter_module. ups

nginx源码分析--GDB调试

利用gdb[i]调试nginx[ii]和利用gdb调试其它程序没有两样,不过nginx可以是daemon程序,也可以以多进程运行,因此利用gdb调试和平常会有些许不一样.当然,我们可以选择将nginx设置为非daemon模式并以单进程运行,而这需做如下设置即可: daemon off; master_process off; 这是第一种情况: 这种设置下的nginx在gdb下调试很普通,过程可以[iii]是这样: 执行命令: [email protected]:/usr/local/nginx/

Nginx源码分析 - Nginx启动以及IOCP模型

Nginx 源码分析 - Nginx启动以及IOCP模型 版本及平台信息 本文档针对Nginx1.11.7版本,分析Windows下的相关代码,虽然服务器可能用linux更多,但是windows平台下的代码也基本相似 ,另外windows的IOCP完成端口,异步IO模型非常优秀,很值得一看. Nginx启动 曾经有朋友问我,面对一个大项目的源代码,应该从何读起呢?我给他举了一个例子,我们学校大一大二是在紫金港校区,到了 大三搬到玉泉校区,但是大一的时候也会有时候有事情要去玉泉办.偶尔会去玉泉,但

nginx源码分析之网络初始化

nginx作为一个高性能的HTTP服务器,网络的处理是其核心,了解网络的初始化有助于加深对nginx网络处理的了解,本文主要通过nginx的源代码来分析其网络初始化. 从配置文件中读取初始化信息 与网络有关的配置命令主要有两个:listen和sever_name.首先先了解这两个命令的用法. listen listen命令设置nginx监听地址,nginx从这里接受请求.对于IP协议,这个地址就是address和port:对于UNIX域套接字协议,这个地址就是path. 一条listen指令只能

[nginx] nginx源码分析--健康检查模块锁分析

健康检查模块 见前文:[nginx] nginx源码分析--健康检查模块 其中有一张框架图, 接下来的内容,将会利用到这个图中的内容. [classic_tong @ https:////www.cnblogs.com/hugetong/p/12274125.html ]  描述 我们知道nginx是多进程的,每个进程都保存了相同的配置.但是实际上, 并不需要每一个进程对每一个后端服务器进行. 于是健康检查模块在这里需要一个进程间同步机制,用来协商哪一个进程对 哪一个后端服务器进行检查. 接下来

nginx源码分析--进程间通信机制 &amp; 同步机制

Nginx源码分析-进程间通信机制 从nginx的进程模型可以知道,master进程和worker进程需要通信,nginx中通信的方式有套接字.共享内存.信号.对于master进程,从外部接受信号,master进程主要就是监控.接受外部信号,将有必要的信号传递给worker进程,master进程大部分时间都是阻塞在sigsuspend()函数调用上.Worker进程屏蔽了所有的外部信号,那么Master进程就通过套接字和worker进程通信,worker进程修改全局变量,使得worker进程接受

nginx源码分析--nginx模块解析

nginx的模块非常之多,可以认为所有代码都是以模块的形式组织,这包括核心模块和功能模块,针对不同的应用场合,并非所有的功能模块都要被用到,附录A给出的是默认configure(即简单的http服务器应用)下被连接的模块,这里虽说是模块连接,但nginx不会像apache或lighttpd那样在编译时生成so动态库而在程序执行时再进行动态加载,nginx模块源文件会在生成nginx时就直接被编译到其二进制执行文件中,所以如果要选用不同的功能模块,必须对nginx做重新配置和编译.对于功能模块的选