我们讨论过,树的搜索效率与树的深度有关。二叉搜索树的深度可能为n,这种情况下,每次搜索的复杂度为n的量级。AVL树通过动态平衡树的深度,单次搜索的复杂度为log(n)。我们下面看伸展树(splay tree),它对于m次连续搜索操作有很好的效率。伸展树会在一次搜索后,对树进行一些特殊的操作。这些操作的理念与AVL树有些类似,即通过旋转,来改变树节点的分布,并减小树的深度。但伸展树并没有AVL的平衡要求,任意节点的左右子树可以相差任意深度。与二叉搜索树类似,伸展树的单次搜索也可能需要n次操作。但伸展树可以保证,m次的连续搜索操作的复杂度为mlog(n)的量级,而不是mn量级。
伸展树的出发点是这样的:考虑到局部性原理(刚被访问的内容下次可能仍会被访问,查找次数多的内容可能下一次会被访问),为了使整个查找时间更小, 被查频率高的那些节点应当经常处于靠近树根的位置。这样,很容易得想到以下这个方案:每次查找节点之后对树进行重构,把被查找的节点搬移到树根,这种自调整形式的二叉查找树就是伸展树。每次对伸展树进行操作后,它均会通过旋转的方法把被访问节点旋转到树根的位置。为了将当前被访问节点旋转到树根,我们通常将节点自底向上旋转,直至该节点成为树根为止。“旋转”的巧妙之处就是在不打乱数列中数据大小关系(指中序遍历结果是全序的)情况下,所有基本操作的平摊复杂度仍为O(log n)。
伸展树主要有三种旋转操作,分别为单旋转,一字形旋转和之字形旋转。为了便于解释,我们假设当前被访问节点为X,X的父亲节点为Y(如果X的父亲节点存在),X的祖父节点为Z(如果X的祖父节点存在)。具体来说,在查询到目标节点后,伸展树会不断进行下面三种操作中的一个,直到目标节点成为根节点 (注意,祖父节点是指父节点的父节点)
1. zig: 当目标节点是根节点的左子节点或右子节点时,进行一次单旋转,将目标节点调整到根节点的位置。
2. zig-zag: 当目标节点、父节点和祖父节点成"zig-zag"构型时,进行一次双旋转,将目标节点调整到祖父节点的位置。
3. zig-zig:当目标节点、父节点和祖父节点成"zig-zig"构型时,进行一次zig-zig操作,将目标节点调整到祖父节点的位置。
单旋转操作和双旋转操作见AVL树。下面是zig-zig操作的示意图:
zig-zig operation
在伸展树中,zig-zig操作(基本上)取代了AVL树中的单旋转。通常来说,如果上面的树是失衡的,那么A、B子树很可能深度比较大。相对于单旋转(想一下单旋转的效果),zig-zig可以将A、B子树放在比较高的位置,从而减小树总的深度。
下面我们用一个具体的例子示范。我们将从树中搜索节点2:
Original
zig-zag (double rotation)
zig-zig
zig (single rotation at root)
伸展树的另一个好处是将最近搜索的节点放在最容易搜索的根节点的位置。在许多应用环境中,比如网络应用中,某些固定内容会被大量重复访问。伸展树可以让这种重复搜索以很高的效率完成。