Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4003 Accepted Submission(s): 1347
Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory
has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted
and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible
schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Sample Input
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
Sample Output
Case 1: Yes Case 2: Yes
Author
allenlowesy
Source
2010 ACM-ICPC Multi-University Training
Contest(13)——Host by UESTC
题意:有n个机器,m项任务,每个任务需要Pi天时间,开工日期到收工日期为Si到Ei,一次只能在一台机器上加工,可以挪到别的机器上,问能否按期完成所有任务。
题解:这题关键在构图,设置一个源点到每项任务有一条边,容量为该项任务所需要的天数,每项任务到合法加工日期内的每个天数加一条边,容量为1,即每天工作量为1,然后每个天数到汇点添加一条边,容量为机器数量n,表示一天最大加工量。可惜的是代码超时了-_-#
#include <stdio.h> #include <string.h> #define maxn 710 #define maxm 700000 #define inf 0x3f3f3f3f int head[maxn], n, m, id; // n machines struct Node { int u, v, c, next; } E[maxm]; int source, sink, tar, maxDay, nv; int que[maxn], Layer[maxn], pre[maxn]; bool vis[maxn]; void addEdge(int u, int v, int c) { E[id].u = u; E[id].v = v; E[id].c = c; E[id].next = head[u]; head[u] = id++; E[id].u = v; E[id].v = u; E[id].c = 0; E[id].next = head[v]; head[v] = id++; } void getMap() { int i, j, u, v, p, s, e; id = tar = maxDay = 0; scanf("%d%d", &m, &n); memset(head, -1, sizeof(head)); source = 0; sink = 705; for(i = 1; i <= m; ++i) { scanf("%d%d%d", &p, &s, &e); tar += p; if(e > maxDay) maxDay = e; addEdge(source, i, p); for(j = s; j <= e; ++j) addEdge(i, m + j, 1); } sink = m + maxDay + 1; nv = sink + 1; for(i = 1; i <= maxDay; ++i) addEdge(m + i, sink, n); } bool countLayer() { memset(Layer, 0, sizeof(int) * nv); int id = 0, front = 0, u, v, i; Layer[source] = 1; que[id++] = source; while(front != id) { u = que[front++]; for(i = head[u]; i != -1; i = E[i].next) { v = E[i].v; if(E[i].c && !Layer[v]) { Layer[v] = Layer[u] + 1; if(v == sink) return true; else que[id++] = v; } } } return false; } int Dinic() { int i, u, v, minCut, maxFlow = 0, pos, id = 0; while(countLayer()) { memset(vis, 0, sizeof(bool) * nv); memset(pre, -1, sizeof(int) * nv); que[id++] = source; vis[source] = 1; while(id) { u = que[id - 1]; if(u == sink) { minCut = inf; for(i = pre[sink]; i != -1; i = pre[E[i].u]) if(minCut > E[i].c) { minCut = E[i].c; pos = E[i].u; } maxFlow += minCut; for(i = pre[sink]; i != -1; i = pre[E[i].u]) { E[i].c -= minCut; E[i^1].c += minCut; } while(que[id-1] != pos) vis[que[--id]] = 0; } else { for(i = head[u]; i != -1; i = E[i].next) if(E[i].c && Layer[u] + 1 == Layer[v = E[i].v] && !vis[v]) { vis[v] = 1; que[id++] = v; pre[v] = i; break; } if(i == -1) --id; } } } return maxFlow; } void solve(int cas) { printf("Case %d: %s\n\n", cas, tar == Dinic() ? "Yes" : "No"); } int main() { // freopen("stdin.txt", "r", stdin); int t, cas; scanf("%d", &t); for(cas = 1; cas <= t; ++cas) { getMap(); solve(cas); } return 0; }