题目来自于Leetcode
https://leetcode.com/problems/pascals-triangle/
Given numRows, generate the first numRows of Pascal‘s triangle.
For example, given numRows = 5,
Return
[ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ]
class Solution { public: vector<vector<int>> generate(int numRows) { vector<vector<int> >res; for(int i=0;i<numRows;i++) { vector<int>vec(i+1,1); if(i>1) for(int j=1;j<i;j++) vec[j]=res[i-1][j-1]+res[i-1][j]; res.push_back(vec); vector<int>().swap(vec); } return res; } };
Pascal‘s Triangle II
Total Accepted: 42320 Total
Submissions: 143760
Given an index k, return the kth row of the Pascal‘s triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
此处有内存要求尽管採用第一种方法能够ac可是明显不符合要求
class Solution { public: vector<int> getRow(int rowIndex) { vector<vector<int> >res; for(int i=0;i<rowIndex+1;i++) { vector<int>vec(i+1,1); if(i>1) for(int j=1;j<i;j++) vec[j]=res[i-1][j-1]+res[i-1][j]; res.push_back(vec); vector<int>().swap(vec); } return res[rowIndex]; } };
我们必须又一次设计算法。
第一想到的就是pascal三角形的系数会等于N行i列的值等于
( r
n )
可是
class Solution { public: vector<int> getRow(int rowIndex) { vector<int>res(rowIndex+1,1); if(rowIndex<2) return res; long long nth=1; for(int i=1;i<rowIndex+1;i++) nth*=i; long long rth=1,n_rth=nth; for(int i=1;i<rowIndex;i++) { n_rth/=(rowIndex-i+1); res[i]=nth/rth/n_rth; rth*=(i+1); } return res; } };
用来存储二项式系数的值非常easy在rowIndex=24时候就报错了
最后一种也就是正确的方法是利用分配的空间来计算的详细给出了k=5的详细描写叙述
class Solution { public: vector<int> getRow(int rowIndex) { vector<int>res(rowIndex+1,1); if(rowIndex<2) return res; int t1,t2; for(int i=2;i<=rowIndex;i++) { t1=res[0]; t2=res[1]; for(int j=1;j<i+1;j++) { res[j]=t1+t2; t1=t2; t2=res[j+1]; } res[i]=1; } return res; } };
Question
Solution
Pascal's Triangle I,II
时间: 2024-10-31 02:17:55