《STL源码剖析》---stl_hash_set.阅读笔记

STL只规定接口和复杂度,对于具体实现不作要求。set大多以红黑树实现,但STL在标准规格之外提供了一个所谓的hash_set,以hash table实现。hash_set的接口,hash_table都提供了,所以几乎所有的hash_set操作都是直接调用hash_table的函数而已。

除了hash_set,还有hash_multiset,它们两个的关系就像set和multiset的关系,一个不允许键值重复,另外一个允许键值重复。其他实现一样。

G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_hash_set.h 完整列表
/*
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

/* NOTE: This is an internal header file, included by other STL headers.
 *   You should not attempt to use it directly.
 */

#ifndef __SGI_STL_INTERNAL_HASH_SET_H
#define __SGI_STL_INTERNAL_HASH_SET_H

__STL_BEGIN_NAMESPACE

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif

#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
// hash<>是个 function object,定义于 <stl_hash_fun.h>中
//例:hash<int>::operator()(intx)const{return x;}
template <class Value, class HashFcn = hash<Value>,
          class EqualKey = equal_to<Value>,
          class Alloc = alloc>
#else
template <class Value, class HashFcn, class EqualKey, class Alloc = alloc>
#endif
class hash_set
{
private:
  // 以下使用的 identity<> 定义于 <stl_function.h> 中。
  typedef hashtable<Value, Value, HashFcn, identity<Value>,
                    EqualKey, Alloc> ht;
  ht rep;	// 底层机制以 hash table 完成

public:
  typedef typename ht::key_type key_type;
  typedef typename ht::value_type value_type;
  typedef typename ht::hasher hasher;
  typedef typename ht::key_equal key_equal;

  typedef typename ht::size_type size_type;
  typedef typename ht::difference_type difference_type;
  typedef typename ht::const_pointer pointer;
  typedef typename ht::const_pointer const_pointer;
  typedef typename ht::const_reference reference;
  typedef typename ht::const_reference const_reference;

  typedef typename ht::const_iterator iterator;
  typedef typename ht::const_iterator const_iterator;

  hasher hash_funct() const { return rep.hash_funct(); }
  key_equal key_eq() const { return rep.key_eq(); }

public:
  //预设使用大小为100的vector buckets。将会自动调整为比100大的质数
  hash_set() : rep(100, hasher(), key_equal()) {}
  explicit hash_set(size_type n) : rep(n, hasher(), key_equal()) {}
  hash_set(size_type n, const hasher& hf) : rep(n, hf, key_equal()) {}
  hash_set(size_type n, const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) {}

// 插入全部调用 insert_unique(),不允许键值重复
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  hash_set(InputIterator f, InputIterator l)
    : rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
  template <class InputIterator>
  hash_set(InputIterator f, InputIterator l, size_type n)
    : rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
  template <class InputIterator>
  hash_set(InputIterator f, InputIterator l, size_type n,
           const hasher& hf)
    : rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
  template <class InputIterator>
  hash_set(InputIterator f, InputIterator l, size_type n,
           const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) { rep.insert_unique(f, l); }
#else

  hash_set(const value_type* f, const value_type* l)
    : rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
  hash_set(const value_type* f, const value_type* l, size_type n)
    : rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
  hash_set(const value_type* f, const value_type* l, size_type n,
           const hasher& hf)
    : rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
  hash_set(const value_type* f, const value_type* l, size_type n,
           const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) { rep.insert_unique(f, l); }

  hash_set(const_iterator f, const_iterator l)
    : rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
  hash_set(const_iterator f, const_iterator l, size_type n)
    : rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
  hash_set(const_iterator f, const_iterator l, size_type n,
           const hasher& hf)
    : rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
  hash_set(const_iterator f, const_iterator l, size_type n,
           const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) { rep.insert_unique(f, l); }
#endif /*__STL_MEMBER_TEMPLATES */

public:
  // 所有操作几乎都是调用 hash table的函数。
  size_type size() const { return rep.size(); }
  size_type max_size() const { return rep.max_size(); }
  bool empty() const { return rep.empty(); }
  void swap(hash_set& hs) { rep.swap(hs.rep); }
  friend bool operator== __STL_NULL_TMPL_ARGS (const hash_set&,
                                               const hash_set&);

  iterator begin() const { return rep.begin(); }
  iterator end() const { return rep.end(); }

public:
  pair<iterator, bool> insert(const value_type& obj)
    {
      pair<typename ht::iterator, bool> p = rep.insert_unique(obj);
      return pair<iterator, bool>(p.first, p.second);
    }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l) { rep.insert_unique(f,l); }
#else
  void insert(const value_type* f, const value_type* l) {
    rep.insert_unique(f,l);
  }
  void insert(const_iterator f, const_iterator l) {rep.insert_unique(f, l); }
#endif /*__STL_MEMBER_TEMPLATES */
  pair<iterator, bool> insert_noresize(const value_type& obj)
  {
    pair<typename ht::iterator, bool> p = rep.insert_unique_noresize(obj);
    return pair<iterator, bool>(p.first, p.second);
  }

  iterator find(const key_type& key) const { return rep.find(key); }

  size_type count(const key_type& key) const { return rep.count(key); }

  pair<iterator, iterator> equal_range(const key_type& key) const
    { return rep.equal_range(key); }

  size_type erase(const key_type& key) {return rep.erase(key); }
  void erase(iterator it) { rep.erase(it); }
  void erase(iterator f, iterator l) { rep.erase(f, l); }
  void clear() { rep.clear(); }

public:
  void resize(size_type hint) { rep.resize(hint); }
  size_type bucket_count() const { return rep.bucket_count(); }
  size_type max_bucket_count() const { return rep.max_bucket_count(); }
  size_type elems_in_bucket(size_type n) const
    { return rep.elems_in_bucket(n); }
};

template <class Value, class HashFcn, class EqualKey, class Alloc>
inline bool operator==(const hash_set<Value, HashFcn, EqualKey, Alloc>& hs1,
                       const hash_set<Value, HashFcn, EqualKey, Alloc>& hs2)
{
  return hs1.rep == hs2.rep;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER

template <class Val, class HashFcn, class EqualKey, class Alloc>
inline void swap(hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
                 hash_set<Val, HashFcn, EqualKey, Alloc>& hs2) {
  hs1.swap(hs2);
}

#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

//hash_multiset允许键值重复,其他与hash_set一样
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Value, class HashFcn = hash<Value>,
          class EqualKey = equal_to<Value>,
          class Alloc = alloc>
#else
template <class Value, class HashFcn, class EqualKey, class Alloc = alloc>
#endif
class hash_multiset
{
private:
  typedef hashtable<Value, Value, HashFcn, identity<Value>,
                    EqualKey, Alloc> ht;
  ht rep;

public:
  typedef typename ht::key_type key_type;
  typedef typename ht::value_type value_type;
  typedef typename ht::hasher hasher;
  typedef typename ht::key_equal key_equal;

  typedef typename ht::size_type size_type;
  typedef typename ht::difference_type difference_type;
  typedef typename ht::const_pointer pointer;
  typedef typename ht::const_pointer const_pointer;
  typedef typename ht::const_reference reference;
  typedef typename ht::const_reference const_reference;

  typedef typename ht::const_iterator iterator;
  typedef typename ht::const_iterator const_iterator;

  hasher hash_funct() const { return rep.hash_funct(); }
  key_equal key_eq() const { return rep.key_eq(); }

public:
  hash_multiset() : rep(100, hasher(), key_equal()) {}
  explicit hash_multiset(size_type n) : rep(n, hasher(), key_equal()) {}
  hash_multiset(size_type n, const hasher& hf) : rep(n, hf, key_equal()) {}
  hash_multiset(size_type n, const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) {}

// 以下,插入全部使用 insert_equal(),允许键值重复
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  hash_multiset(InputIterator f, InputIterator l)
    : rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
  template <class InputIterator>
  hash_multiset(InputIterator f, InputIterator l, size_type n)
    : rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
  template <class InputIterator>
  hash_multiset(InputIterator f, InputIterator l, size_type n,
                const hasher& hf)
    : rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
  template <class InputIterator>
  hash_multiset(InputIterator f, InputIterator l, size_type n,
                const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) { rep.insert_equal(f, l); }
#else

  hash_multiset(const value_type* f, const value_type* l)
    : rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
  hash_multiset(const value_type* f, const value_type* l, size_type n)
    : rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
  hash_multiset(const value_type* f, const value_type* l, size_type n,
                const hasher& hf)
    : rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
  hash_multiset(const value_type* f, const value_type* l, size_type n,
                const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) { rep.insert_equal(f, l); }

  hash_multiset(const_iterator f, const_iterator l)
    : rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
  hash_multiset(const_iterator f, const_iterator l, size_type n)
    : rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
  hash_multiset(const_iterator f, const_iterator l, size_type n,
                const hasher& hf)
    : rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
  hash_multiset(const_iterator f, const_iterator l, size_type n,
                const hasher& hf, const key_equal& eql)
    : rep(n, hf, eql) { rep.insert_equal(f, l); }
#endif /*__STL_MEMBER_TEMPLATES */

public:
  size_type size() const { return rep.size(); }
  size_type max_size() const { return rep.max_size(); }
  bool empty() const { return rep.empty(); }
  void swap(hash_multiset& hs) { rep.swap(hs.rep); }
  friend bool operator== __STL_NULL_TMPL_ARGS (const hash_multiset&,
                                               const hash_multiset&);

  iterator begin() const { return rep.begin(); }
  iterator end() const { return rep.end(); }

public:
  iterator insert(const value_type& obj) { return rep.insert_equal(obj); }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l) { rep.insert_equal(f,l); }
#else
  void insert(const value_type* f, const value_type* l) {
    rep.insert_equal(f,l);
  }
  void insert(const_iterator f, const_iterator l) { rep.insert_equal(f, l); }
#endif /*__STL_MEMBER_TEMPLATES */
  iterator insert_noresize(const value_type& obj)
    { return rep.insert_equal_noresize(obj); }    

  iterator find(const key_type& key) const { return rep.find(key); }

  size_type count(const key_type& key) const { return rep.count(key); }

  pair<iterator, iterator> equal_range(const key_type& key) const
    { return rep.equal_range(key); }

  size_type erase(const key_type& key) {return rep.erase(key); }
  void erase(iterator it) { rep.erase(it); }
  void erase(iterator f, iterator l) { rep.erase(f, l); }
  void clear() { rep.clear(); }

public:
  void resize(size_type hint) { rep.resize(hint); }
  size_type bucket_count() const { return rep.bucket_count(); }
  size_type max_bucket_count() const { return rep.max_bucket_count(); }
  size_type elems_in_bucket(size_type n) const
    { return rep.elems_in_bucket(n); }
};

template <class Val, class HashFcn, class EqualKey, class Alloc>
inline bool operator==(const hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs1,
                       const hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs2)
{
  return hs1.rep == hs2.rep;
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER

template <class Val, class HashFcn, class EqualKey, class Alloc>
inline void swap(hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs1,
                 hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs2)
{
  hs1.swap(hs2);
}

#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif

__STL_END_NAMESPACE

#endif /* __SGI_STL_INTERNAL_HASH_SET_H */

// Local Variables:
// mode:C++
// End:

《STL源码剖析》---stl_hash_set.阅读笔记

时间: 2024-10-06 11:12:23

《STL源码剖析》---stl_hash_set.阅读笔记的相关文章

[转载]《STL源码剖析》阅读笔记之 迭代器及traits编程技法

本文从三方面总结迭代器   迭代器的思想   迭代器相应型别及traits思想   __type_traits思想 一 迭代器思想 迭代器的主要思想源于迭代器模式,其定义如下:提供一种方法,使之能够依序巡防某个聚合物(容 器)所含的元素,而又无需暴露该聚合物的内部表达式.可见她的主要作用便是能够降低耦合,提高代码的 模块性. STL的的中心思想在于:将数据容器和算法分开,彼此独立设计,最后再以一贴胶着剂将它们撮合 在一起,这贴胶着剂便是迭代器.迭代器的行为类似智能指针(例如标准库的auto_pt

stl源码剖析 详细学习笔记 算法总览

//****************************基本算法***************************** /* stl算法总览,不在stl标准规格的sgi专属算法,都以 *加以标记 算法名称              算法用途         质变                   所在文件 accumulate          元素累计            否                   <stl_numeric.h> adjacent_differenc

stl源码剖析 详细学习笔记 算法(1)

//---------------------------15/03/27---------------------------- //算法 { /* 质变算法:会改变操作对象之值 所有的stl算法都作用在由迭代器[first,last)所标示出来的区间上.质变算法 就是 运算过程会更改区间内的元素内容 非质变算法:和质变算法相反 */ /* stl算法的一般形式 1>所有的泛型算法的前两个参数都是一对迭代器,通常称为first和last,用以标示算法的操作区间 2>stl习惯采用前闭后开区间

《STL源码剖析》学习笔记(二)

STL标准模板库作为C++标准库的一部分,其组件包括:容器.算法.迭代器.仿函数.配接器.配置器. 今天来说说容器,容器主要可以分为两种:序列式容器(元素是可序的,但并非有序).关联式容器. 一.序列式容器      1.vector 1)vector和C/C++的内置数组类似,只不过array空间是静态的,vector的空间则是可以改变的,当元素个数达到空间上限时,会重新分配空间,进行复制,然后删除原空间数据. 2)vector占用一段连续的存储空间,其内部含三个指针,分别指向:该连续空间的开

《STL源码剖析》学习笔记-第6章(一) set相关算法

STL中定义的set要求元素不得重复且已经排序.而set算法要求的都是有序区间(输出也是有序的),但元素可以重复出现. STL提供了4个set相关的算法,分别是并集(union).交集(intersection).差集(difference)和对称差集(symmetric difference),这4个算法接受的set必须是有序区间,都至少接受4个参数,分别表示两个set区间.一般而言,set算法前4个参数分别表示两个区间,第五个参数表示存放结果的区间的起始位置. 1.set_union 求两个

《STL源码剖析》学习笔记-第5章 关联式容器(二)

1.set和multiset set的特性: (1)所有元素都会根据元素的键值自动被排序. (2)set是集合,它的元素的键值就是实值,实值就是键值,不允许两个元素有相同的值. (3)不可以通过set的iterator来改变元素的值,因为set的元素值就是键值,改变键值会违反元素排列的规则. (4)在客户端对set进行插入或删除操作后,之前的迭代器依然有效.当然,被删除的元素的迭代器是个例外. (5)它的底层机制是RB-tree.几乎所有的操作都只是转调用RB-tree的操作行为而已. mult

stl源码剖析 详细学习笔记 空间配置器

//---------------------------15/04/05---------------------------- /* 空间配置器概述: 1:new操作包含两个阶段操作 1>调用::operator new配置内存(底层使用malloc来申请内存). 2>调用函数的构造函数,构造对象内容. delte和new一样,先调用析构函数,再调用::operator delete释放内存. 2:为了效率,stl把两个阶段分开来. 1>内存配置操作: alloc::allocate

《STL源码剖析》学习笔记系列之七、八——仿函数和配接器

1. 仿函数 仿函数又名函数对象,具有函数性质的对象,就是传入一些参数,然后对参数进行某些运算,然后返回一个值.为了能够使行为类似函数,需要在类别定义中必须自定义function call 运算子operator(). 仿函数有如下几类:算术类仿函数(plus<T>.minus<T>)关系运算类仿函数(equal_to<T>.less<T>)逻辑运算类仿函数(logical_and<T>.logical_or<T>.logical_n

《STL源码剖析》读书笔记之关联式容器(1)

1.AVL树 AVL tree是指任何节点的左右子树高度相差最多1的二叉搜索树.任何节点左右子树高度最多相差1能够保证AVL树具有"对数深度"的平衡状态.在对AVL tree进行插入操作时,可能造成树平衡被破坏.根据新结点插入位置的不同,可以将平衡的破坏分成四种情况:左左,左右,右左,右右.其中左左和右右被称为外侧插入,可以采用单旋转操作调制解决.而左右和右左则称为内侧插入,可以采用双旋转操作调整解决. 单旋转: 双旋转: 2.RB-tree RB-tree是另外一个被广泛应用的平衡二

《STL源码剖析》读书笔记之序列式容器(3)

1.heap heap不属于STL容器组件,它是priority queue的底层实现机制. (1)push_heap算法 向堆中加入元素,首先将要加入的元素放到堆所在数组的末端,然后再对这个元素进行上溯操作,直到新堆合法为止.如下图所示: (2)pop_heap算法 pop_heap操作取走堆中的最大(小)值.根据堆的特性,堆的最大(小)值必定是堆所存数组的第一个元素.取堆的最大(小)元素时,将堆的最后一个元素和堆的第一个元素互换,然后再对第一个元素进行下溯操作,直到新堆满足堆的定义.下图给出