Dijsktra算法介绍
Dijsktra算法是大牛Dijsktra于1956年提出,用来解决有向图单源最短路径问题。但不能解决负权的有向图,若要解决负权图则需要用 到Bellman-Ford算法。算法思想是,在dfs遍历图的过程中,每一次取出离源点的最近距离的点,将该点标记为已访问,松弛与该点相邻的节点。约 定:对有向图(n, m),n为顶点数,m为边数,d[i]记录源点到节点i的距离,U为未访问的节点集合,V为已访问的节点集合。具体步骤如下:
- 在U中寻找离源点最近的节点minNode,并将节点minNode标记为已访问(从集合U中移到集合V中)
d[minNode]=mini∈Ud[i]
- 松弛与minNode相邻的未访问节点,更新d数组
d[i]i∈U=min{d[i] , d[minNode]+edge[minNode][i]} - 重复上述操作n次,即访问了所有节点,集合U为空
代码实现
visit数组记录节点访问情况
void dijkstra(int n)
{
int lowcost, minNode;
int d[n], visit[n];
/*初始化d数组*/
for(int i = 0; i < n; i++) {
d[i] = inf;
visit[i] = 0;
}
d[0] = 0;
/*重复操作n次*/
for(int count = 1; count <= n; count++) {
lowcost = inf;
//找出minNode
for(int i = 0; i < n-1; i++) {
if(!visit[i] && d[i] < lowcost) {
lowcost=d[i];
minNode=i;
}
}
visit[minNode]=1;
//松弛操作
for(int i=0; i<n; i++) {
if(!visit[i])
d[i]=min(d[i],d[minNode]+edge[minNode][i]);
}
}
}
复杂度分析
- 时间复杂度:重复操作(即最外层for循环)n次,找出minNode操作、松弛操作需遍历所有节点,因此复杂度为O(n2).
- 空间复杂度:开辟两个长度为n的数组d与visit,因此复杂度为T(n).
算法优化
我们可以观察到最外层的循坏没法再做优化,因为操作就是得重复n次才能访问到所有节点;只有针对里层的两个操作进行优化了:
- 找出minNode操作通过遍历来查找,缺点是效率太慢了,并且有一些节点是已访问的。因此,我们可以用小顶堆来维护d数组,堆顶对应就是minNode;取出堆顶,然后删除,如此堆中节点都是未访问的。
- 通过建立有向图的邻接表,松弛操作不需要遍历所有节点
堆的性质
堆是一种完全二叉树(complete binary tree);若其高度为h,则1~h-1层都是满的。如果从左至右从上至下从1开始给节点编号,堆满足:
- 节点i的父节点编号为i/2.
- 节点i的左右孩子节点编号分别为2∗i, 2∗i+1.
如果节点i的关键值小于父节点的关键值,则需要进行上浮操作(move up);如果节点i的关键值大于父节点的,则需要下沉操作(move down)。为了保持堆的整体有序性,通常下沉操作从根节点开始。
小顶堆优化Dijsktra算法
为了同时记录数组d[i]中索引i值,我们让每个堆节点挂两个值——顶点、源点到该顶点的距离。算法伪代码如下:
Insert(vertex 0, 0) //插入源点
FOR i from 1 to n-1: //初始化堆
Insert(vertex i, infinity)
FOR k from 1 to n:
(i, d) := DeleteMin()
FOR all edges ij:
IF d + edge(i,j) < j’s key
DecreaseKey(vertex j, d + edge(i,j))
- Insert(vertex i, d)指在堆中插入堆节点(i, d)。
- DeleteMin()指取出堆顶并删除,时间复杂度为O(log n)。
- DecreaseKey(vertex j, d + edge(i,j))是松弛操作,更新节点(vertex j, d + edge(i,j)),需要进行上浮,时间复杂度为O(log n)。
我们需要n次DeleteMin,m次DecreaseKey,优化版的算法时间复杂度为O((n+m)log n).
代码实现
邻接表
每一个邻接表的表项包含两个部分:头节点、表节点,整个邻接表可以用一个头节点数组表示。下面给出其Java实现
public class AdjList {
private int V = 0;
private HNode[] adjList =null; //邻接表
/*表节点*/
class ArcNode {
int adjvex, weight;
ArcNode next;
public ArcNode(int adjvex, int weight) {
this.adjvex = adjvex;
this.weight = weight;
next = null;
}
}
/*头节点*/
class HNode {
int vertex;
ArcNode firstArc;
public HNode(int vertex) {
this.vertex = vertex;
firstArc = null;
}
}
/*构造函数*/
public AdjList(int V) {
this.V = V;
adjList = new HNode[V+1];
for(int i = 1; i <= V; i++) {
adjList[i] = new HNode(i);
}
}
/*添加边*/
public void addEdge(int start, int end, int weight) {
ArcNode arc = new ArcNode(end, weight);
ArcNode temp = adjList[start].firstArc;
adjList[start].firstArc = arc;
arc.next = temp;
}
public int getV() {
return V;
}
public HNode[] getAdjList() {
return adjList;
}
}
堆的实现
public class Heap {
public int size = 0 ;
public Node[] h = null; //堆节点
/*记录Node中vertex对应堆的位置*/
public int[] index = null;
/*堆节点:
* 存储节点+源点到该节点的距离
*/
public class Node {
int vertex, weight;
public Node(int vertex, int weight) {
this.vertex = vertex;
this.weight = weight;
}
}
public Heap(int maximum) {
h = new Node[maximum];
index = new int[maximum];
}
/*上浮*/
public void moveUp(int pos) {
Node temp = h[pos];
for (; pos > 1 && h[pos/2].weight > temp.weight; pos/=2) {
h[pos] = h[pos/2];
index[h[pos].vertex] = pos; //更新位置
}
h[pos] = temp;
index[h[pos].vertex] = pos;
}
/*下沉*/
public void moveDown( ) {
Node root = h[1];
int pos = 1, child = 1;
for(; pos <= size; pos = child) {
child = 2*pos;
if(child < size && h[child+1].weight < h[child].weight)
child++;
if(h[child].weight < root.weight) {
h[pos] = h[child];
index[h[pos].vertex] = pos;
} else {
break;
}
}
h[pos] = root;
index[h[pos].vertex] = pos;
}
/*插入操作*/
public void insert(int v, int w) {
h[++size] = new Node(v, w);
moveUp(size);
}
/*删除堆顶元素*/
public Node deleteMin( ) {
Node result = h[1];
h[1] = h[size--];
moveDown();
return result;
}
}
算法的实现
public class ShortestPath {
private static final int inf = 0xffffff;
public static void dijkstra(AdjList al) {
int V = al.getV();
Heap heap = new Heap(V+1);
heap.insert(1, 0);
for(int i = 2; i <= V; i++) {
heap.insert(i, inf);
}
for(int k =1; k <= V; k++) {
Heap.Node min = heap.deleteMin();
if(min.vertex == V) {
System.out.println(min.weight);
break;
}
AdjList.ArcNode arc = al.getAdjList()[min.vertex].firstArc;
while(arc != null) {
if((min.weight+ arc.weight) < heap.h[heap.index[arc.adjvex]].weight) {
heap.h[heap.index[arc.adjvex]].weight = min.weight+ arc.weight;
heap.moveUp(heap.index[arc.adjvex]);
}
arc = arc.next;
}
}
}
/*main方法用于测试*/
public static void main(String[] args) {
AdjList al = new AdjList(5);
al.addEdge(1, 2, 20);
al.addEdge(2, 3, 30);
al.addEdge(3, 4, 20);
al.addEdge(4, 5, 20);
al.addEdge(1, 5, 100);
dijkstra(al);
}
}
参考资料
[1] FRWMM, ALGORITHMS - DIJKSTRA WITH HEAPS.
时间: 2024-11-03 03:25:33