【欧几里德的游戏】

这道题好神仙啊

我们推一下\(SG\)函数

显然答案就是\(SG(n,m)\),\(SG(n,m)=0\)则先手败,否则先手胜

首先几个非常明显的地方\(SG(n,0)=0\),这是显然的,上来就面对了必败状态

之后看看\(SG\)是如何转移的

\[SG(n,m)=mex\{SG(n-m,m,SG(n-2*m,m)...SG(m,n\%m))\}\]

\(mex\)是基于集合的操作,\(mex(S)=\{min(x)\in N|x\notin S\}\),也就是不属于集合\(S\)的最小自然数

非常显然的是

\[SG(n-m,m)=mex\{SG(n-2*m,m),SG(n-3*m,m)...SG(m,n\%m)\}\]

之后会惊奇的发现好像我们知道了\(SG(m,n\%m)\)就可以推所有了

分类讨论一波

如果\(SG(m,n\%m)=1\),那么由于\(SG(m,n\%m+m)=mex\{SG(m,n\%m)\}\),所以这个时候\(SG(m,n\%m+m)=0\),于是\(SG(n,m)=1\)

如果\(SG(m,n\%m)=0\),那么\(SG(m,n\%m+m)=1\),所以非常显然\(SG(n,m)=1\)

但是这一切的前提就是\(SG(m,n\%m+m)\)存在,如果\(m<=2*n\),那么\(SG(n,m)\)就直接等于\(SG(m,n\%m)\)了,也就是\(SG(n,m)=SG(m,n\%m)\bigoplus1\)

于是一个类似于\(gcd\)的迭代就好了

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline LL read()
{
    char c=getchar();
    int x=0;
    while(c<‘0‘||c>‘9‘) c=getchar();
    while(c>=‘0‘&&c<=‘9‘)
        x=(x<<3)+(x<<1)+c-48,c=getchar();
    return x;
}
int T;
LL n,m;
inline int SG(LL n,LL m)
{
    if(!m) return 0;
    if(n>=m*2) return 1;
    return 1^SG(m,n%m);
}
int main()
{
    T=read();
    while(T--)
    {
        n=read(),m=read();
        if(SG(max(n,m),min(n,m))) puts("Stan wins");
            else puts("Ollie wins");
    }
    return 0;
}

原文地址:https://www.cnblogs.com/asuldb/p/10205759.html

时间: 2024-10-08 20:17:17

【欧几里德的游戏】的相关文章

洛谷P1290 欧几里德的游戏 数学 博弈论 模拟

洛谷P1290 欧几里德的游戏 数学 博弈论 模拟 这道题我们因为当 x 大于 y 时 你也只能在合法范围 内取 1 个 y 两个 y 也就是说 能取的y大于等于2时,则你本质不同的取法共有两种,此时你必定获胜,因为本质不同,而在最优策略下,则说明胜利者也不同,也就是说这时候你可以决定自己的输赢 ,我们称这种必胜局为 v 局 2.但是如果 v 局后面还有v 局怎么办,这个不必担心,因为先拿到 v局的人,有两种本质不同的取法,也就是说 他可以控制自己下次必定拿到 v 局,这样就 能确保胜利了 所以

VijosP1208欧几里德的游戏 博弈

欧几里德的游戏 题目描述 欧 几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一 个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人 得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程:     Start:25 7     Stan:11 7     Ollie:4 7     Stan:4

洛谷——P1290 欧几里德的游戏

P1290 欧几里德的游戏 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 S

欧几里德的游戏

题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作--直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 Stan:1 0 Stan赢得

洛谷 1290 欧几里德的游戏

https://www.luogu.org/problem/show?pid=1290 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作--直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7

P1290 欧几里德的游戏

题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 Stan:1 0 Stan赢得

LGOJ1290 欧几里德的游戏

题目链接 P1290 and UVA10368 (双倍经验[虽然标签差距很有趣]) 题目大意 给定两个数\(n\)和\(m\),每次操作可以用较大数减去较小数的正整数倍,不可以减成负数. 先获得一个\(0\)的人获胜,问先手是否必胜. \(n,m \leq 2^{31}-1\) 多组数据. Solution 一眼博弈论题吧2333 \(SG\)函数和递归操作应该是摆在眼前的 先记较大数为\(n\),较小数为\(m\) 三种情况: 1.如果当前态的\(n\)和\(m\)中有一个已经是\(0\)了

洛谷1290 欧几里得的游戏

题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作--直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 Stan:1 0 Stan赢得

AC日记——欧几里得的游戏 洛谷 P1290

题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 Stan:1 0 Stan赢得