分析HM参考帧的管理:
HEVC采用了参考帧集(RPS)的技术来管理已解码的帧,用作后续图像的参考。与之前的视频编码标准中参考侦管理策略不同的是,HEVC中的RPS技术,通过直接在每一帧开始的片头码流中传输DPB中各个帧的状态变化,而H.264/AVC中的滑动窗和MMCO (Memory ManagementControl Operation)这两种参考帧管理技术,是通过传输每一个片的DPB的相对变化来实现,一但发生数据丢失,将会有持续的影响。
1、参考帧管理基本知识
H.263, H.264/AVC和HEVC中都采用了多帧参考技术,来提高帧间预测的准确性。解码已经完成的图像,被缓存在DPB中,供后续的帧用作参考图像,因此,标准需要对DPB中的图像进行管理。DPB中的每一个图像,有三种状态“Unused for reference”、“Used for short-termreference"和”Used for long-term reference",这三种状态之间的转换,是通过解码图像标记过程进行控制的。H。264/AVC中采用了滑动窗和MMCO两种方式。滑动窗管理方式,顾名思义,是以DPB可以存放的帧数为窗口,随着当前解码的图像,以先入先出的方式,将新的解码图像移入,将超出窗口的解码图像移出,因此,DPB中保存的是最近解码的多个图像。MMCO是通过在码流中传输控制命令,完成对DPB中图像的状态标记的,它可以将一个“Used for reference“ (short-term or long-term)标记为“Unused for reference也可以将当前帧或者“Used for short-termreference“的帧,标记为“ Used for long-term reference ”等。
2、HEVC 参考帧集技术(RPS)
为了增强参考帧管理的抗差错能力,HEVC采用了参考侦集技术,它通过直接在每一帧开始的片头码流中传输DPB中各个帧的状态变化,将当前帧以及后续帧可能用到的参考帧在DPB中都进行描述,描述以POC作为一帧贞的身份标识。因此,它不需要依赖于前面帧的DPB状态,从而增强了抗差错的性能。简言之,每帧的第一个片中包含一个RPS,它是由一组“ΔPOC”(当前帧POC与其POC的差)和“是否用作当前帧/后续侦的参考”这些标识信息组成,DPB根据片头中RPS的描述,对参考帧进行标记。例如,POC=4的B帧,只能参考POC=0的I帧,其 RPS 为{(ΔPOC =3,UsedByCurPic)}; POC=3 的 b 帧,可以参考 P0C=4和 P0C=2 的两个B帧,其 RPS 为{(ΔPOC = -1,UsedByCurPic), (ΔPOC=1,UsedByCurPic)};若POC=0的I帧,不再出现在RPS中,则它被标记为“Unused for reference",然后从DPB中移除。
参考帧RPS更新:
a) 在解码P0C=1的帧前,DPB中有三个参考帧,分别是POC=0,4,2的帧;
b) 当接收到P0C=1的片头中传输的RPS信息(描述了解码P0C=1的帧时,DPB的状态,即POC=0和2的帧用作当前帧的short-term参考,P0C=4的帧用作后续帧的参考)后,对DPB中的帧进行状态的标记,将POC=0和2的帧标记为“Used for short-termreference”,并且保留POC=0的帧,以用作后续参考;然后解码P0C=1的帧,解码完成,将P0C=1的帧放入DPB中。此时,DPB中有POC=0, 4,2, 1四帧;
c) 当接收到P0C=3的片头中传输的RPS信息(描述了解码P0C=3的帧时,DPB中,P0C=2和4的帧用作当前帧的short-term参考,POC=0的帧用作后续帧的参考,POC=1的帧不再用作参考)后,对DPB中的帧进行状态的标记,将 P0C=2 和 4 的桢标记为 “Used for short-termreference将 P0C=1的帧移出DPB,然后解码P0C=3的帧,解码完成,将其放入DPB中。此时,DPB中有POC=0,4, 2,3四帧。
3 、RPS预测
从上述描述中可以看出,在用POC值对参考帧进行身份描述时,不同帧的RPS中的多个ΔPOC值的差值是相同的,例如上例中,POC为1的帧的RPS描述中,ΔPOC值分别是{1, -3,-1}, POC为3的帧的RPS描述中,ΔPOC值分别{3,-1,1}为ΔPOC之间的差值为2。因此,不同帧的RPS描述中,ΔPOC值仍然可以进行预测,即DeltaRPS = ΔPOC(RPScurr)- ΔPOC(RPSref),以进一步减少传输代价。
4、HM中的多参考帧配置
参考软件HM在Random Access配置中采用了 Hierachical-B的GOP结构,参考帧数目为4 (或者3),如图3-3所示,但在编码配置中,活动的参考帧数目为2,即只对最近的两个参考帧进行运动估计和运动补偿。与此类似,在LowDelay配置下,参考帧数目为4,活动的参考帧数目为4。
5、HM多参考帧优化选择
从前文的分析中,HEVC及其参考软件HM都支持多参考帧技术,HM中可以配置4或者2个活动参考帧,这使得每个PU的运动估计的复杂度成倍增加。HEVC参考软件中仍然采用传统的块匹配技术进行运动矢量的搜索,并选择最佳的预测方向和参考帧索引。其过程可以简单总结为以下流程:
(1) 从ListX=0开始(即前向预测),将参考索引iReflndex设置为0;
(2) 在当前iReflndex下,生成高级运动矢量预测(AMVP: Advanced MotionVector Prediction)候选列表,并进行AMVP索引的选择;
(3) 以(2)中选中的AMVP为起始点,在当前iReflndex帧内,以SA(T)D+λpred*Bits为代价进行运动估计,得到最佳的运动矢量和最小代价;
(4)设置 iRefIndex=iRefIndex+l,重复步骤(2)和(3),得到当前 iReflndex下的最佳运动矢量和最小代价;直到参考帧队列ListX中的所有标记为“Used for Reference“的参考帧都完成最佳运动矢量和最小代价的计算,并从中挑选代价最小的iReflndex作为当前预测方向下,最佳的参考索引;
(5) 将ListX=1 (即后向预测),重复(2)到(4)步骤,并挑选代价最小的iReflndex作为当前预测方向下的最佳的参考索引;
(6) 固定以List0 (或者List1)中最佳的参考索引和运动矢量为双向预测中的其中之一,对List1(或者list0)中所有参考索引进行(2)到(4)步骤,并找到最佳的双向预测参考索引和运动矢量。
(7) 比较前向预测、后向预测以及双向预测的最小代价,选择出最佳的预测方向。
原文地址:https://www.cnblogs.com/545235abc/p/9765424.html