Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem.
Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty.
Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.
InputThe first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases.
For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree.
The summation of n in input is smaller than or equal to 200000.
OutputFor each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.Sample Input
3 4 2 1 2 2 3 3 4 4 2 1 2 1 3 1 4 6 3 1 2 2 3 3 4 3 5 6 2
Sample Output
1 0 1题解:考虑某条边,则只要两边的2个顶点都大于等于k,则连边时一定会经过这条边,ans++; 参看代码:
#include<bits/stdc++.h> using namespace std; #define clr(a,b,n) memset((a),(b),sizeof(int)*n) typedef long long ll; const int maxn = 2e5+10; int n,k,ans,num[maxn]; vector<int> vec[maxn]; void dfs(int u,int fa) { num[u]=1; for(int i=0;i<vec[u].size();i++) { int v=vec[u][i]; if(v==fa) continue; dfs(v,u); num[u]+=num[v]; if(num[v]>=k&&n-num[v]>=k) ans++; } } int main() { int T,u,v; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&k); clr(num,0,n+1); ans=0; for(int i=1;i<=n;i++) vec[i].clear(); for(int i=1;i<n;i++) { scanf("%d%d",&u,&v); vec[u].push_back(v); vec[v].push_back(u); } dfs(1,-1); //for(int i=1;i<=n;++i) cout<<num[i]<<endl; printf("%d\n",ans); } return 0; }
原文地址:https://www.cnblogs.com/songorz/p/9784973.html