Faster RCNN算法代码解析

一、 Faster-RCNN代码解释

先看看代码结构:

Data:

This directory holds (after you download them):

  • Caffe models pre-trained on ImageNet
  • Faster R-CNN models
  • Symlinks to datasets
  • demo 5张图片
  • scripts 下载模型的脚本

Experiments:

  • logs
  • scripts/faster_rcnn_alt_opt.sh
  • cfgs/faster_rcnn_alt_opt.yml

存放配置文件以及运行的log文件,另外这个目录下有scripts可以用end2end或者alt_opt两种方式训练。

Lib

用来存放一些python接口文件,如其下的datasets主要负责数据库读取,config负责cnn一些训练的配置选项。

lib/rpn

这就是RPN的核心代码部分,有生成proposals和anchor的方法

generate_anchors.py
生成多尺度和多比例的锚点。这里由generate_anthors函数主要完成,可以看到,使用了 3 个尺度( 128, 256,
and 512)以及 3 个比例(1:1,1:2,2:1)。一个锚点由w, h, x_ctr, y_ctr固定,也就是宽、高、x center和y center固定。

proposal_layer.py
这个函数是用来将RPN的输出转变为object
proposals的。作者新增了ProposalLayer类,这个类中,重新了set_up和forward函数,其中forward实现了:生成锚点box、对于每个锚点提供box的参数细节、将预测框切成图像、删除宽、高小于阈值的框、将所有的(proposal, score) 对排序、获取 pre_nms_topN proposals、获取NMS 、获取 after_nms_topN proposals。(注:NMS,nonmaximum suppression,非极大值抑制)

anchor_target_layer.py
生成每个锚点的训练目标和标签,将其分类为1
(object), 0 (not object) , -1 (ignore).当label>0,也就是有object时,将会进行box的回归。其中,forward函数功能:在每一个cell中,生成9个锚点,提供这9个锚点的细节信息,过滤掉超过图像的锚点,测量同GT的overlap。

proposal_target_layer.py
对于每一个object proposal 生成训练的目标和标签,分类标签从0-k,对于标签>0的box进行回归。(注意,同anchor_target_layer.py不同,两者一个是生成anchor,一个是生成proposal)

generate.py
使用一个rpn生成object proposals。
lib/nms文件夹

做非极大抑制的部分,有gpu和cpu两种实现方式
py_cpu_nms.py
核心函数

lib/datasets文件夹
在这里修改读写数据的接口主要是datasets目录下
(1)factory.py
(2)imdb.py
(3)pascal_voc.py
(4)voc_eval.py

lib/fast_rcnn文件夹
主要存放的是python的训练和测试脚本,以及训练的配置文件config.py
(1)config.py
(2)nms_wrapper.py
(3)test.py
(4)train.py

lib/roi_data_layer文件夹
主要是一些ROI处理操作
(1)layer.py
(2)minibatch.py
(3)roidb.py

lib/utils文件夹
(1)blob.py
(2)timer.py

lib/transform文件夹

Models

里面存放了三个模型文件,小型网络的ZF,大型网络VGG16,中型网络VGG_CNN_M_1024。推荐使用VGG16,如果使用端到端的approximate joint training方法,开启CuDNN,只需要3G的显存即可。(1)fast_rcnn_test.pt
(2)rpn_test.pt
(3)stage1_rpn_train.pt
(4)stage1_fast_rcnn_train.pt
(5)stage2_rpn_train.pt
(6)stage2_fast_rcnn_train.pt

Tools

里面存放的是训练和测试的Python文件。

_init_paths.py
用来初始化路径的,也就是之后的路径会join(path,*)

compress_net.py
用来压缩参数的,使用了SVD来进行压缩,这里可以发现,作者对于fc6层和fc7层进行了压缩,也就是两个全连接层。

demo.py
通常,我们会直接调用这个函数,如果要测试自己的模型和数据,这里需要修改。这里调用了fast_rcnn中的test、config、nums_wrapper函数。vis_detections用来做检测,parse_args用来进行参数设置,以及damo和主函数。

eval_recall.py
评估函数

reval.py
re-evaluate,这里调用了fast_rcnn以及dataset中的函数。其中,from_mats函数和from_dets函数分别loadmat文件和pkl文件。

rpn_genetate.py
这个函数调用了rpn中的genetate函数,之后我们会对rpn层做具体的介绍。这里,主要是一个封装调用的过程,我们在这里调用配置的参数、设置rpn的test参数,以及输入输出等操作。

test_net.py
测试fast rcnn网络。主要就是一些参数配置。

train_faster_rcnn_alt_opt.py
训练faster rcnn网络使用交替的训练,这里就是根据faster rcnn文章中的具体实现。可以在主函数中看到,其包括的步骤为:
RPN 1,使用imagenet model进行初始化参数,生成proposal,这里存储在mp_kwargs
fast rcnn 1,使用 imagenet model 进行初始化参数,使用刚刚生成的proposal进行fast rcnn的训练
RPN 2使用 fast rcnn 中的参数进行初始化(这里要注意哦),并生成proposal
fast rcnn 2,使用RPN 2 中的 model进行初始化参数,

train_net.py
使用fast rcnn,训练自己数据集的网络模型。

train_svms.py
使用最原始的RCNN网络训练post-hoc SVMs。

Outputs

这里存放的是训练完成后的输出目录,默认会在faster_rcnn_end2end文件夹下。

我们对照官方的代码分析一下工作流程:

主程序是root/py-faster-rcnn/tools/demo.py

#!/usr/bin/env python

# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""
Demo script showing detections in sample images.
See README.md for installation instructions before running.
"""

import _init_paths  ##把root/py-faster-rcnn/lib文件的路径添加到系统和                    ##root/py-faster-rcnn/caffe-fast-rcnn/python文件路径添加系统
from fast_rcnn.config import cfg  ##导入config配置文件,配置文件里面以easydict形式来                                  ##添加参数,分为三个部分(train,test,misc)                                  ##比如添加阈值,设定图片大小,是否开启RPN
from fast_rcnn.test import im_detect  ##对图片进行resize,换成blobs,返回scores和boxes
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse

CLASSES = (‘__background__‘,
           ‘aeroplane‘, ‘bicycle‘, ‘bird‘, ‘boat‘,
           ‘bottle‘, ‘bus‘, ‘car‘, ‘cat‘, ‘chair‘,
           ‘cow‘, ‘diningtable‘, ‘dog‘, ‘horse‘,
           ‘motorbike‘, ‘person‘, ‘pottedplant‘,
           ‘sheep‘, ‘sofa‘, ‘train‘, ‘tvmonitor‘)

NETS = {‘vgg16‘: (‘VGG16‘,
                  ‘VGG16_faster_rcnn_final.caffemodel‘),
        ‘zf‘: (‘ZF‘,
                  ‘ZF_faster_rcnn_final.caffemodel‘)}

def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect=‘equal‘)
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor=‘red‘, linewidth=3.5)
            )
        ax.text(bbox[0], bbox[1] - 2,
                ‘{:s} {:.3f}‘.format(class_name, score),
                bbox=dict(facecolor=‘blue‘, alpha=0.5),
                fontsize=14, color=‘white‘)

    ax.set_title((‘{} detections with ‘
                  ‘p({} | box) >= {:.1f}‘).format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
    plt.axis(‘off‘)
    plt.tight_layout()
    plt.draw()

def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    im_file = os.path.join(cfg.DATA_DIR, ‘demo‘, image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print (‘Detection took {:.3f}s for ‘
           ‘{:d} object proposals‘).format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description=‘Faster R-CNN demo‘)
    parser.add_argument(‘--gpu‘, dest=‘gpu_id‘, help=‘GPU device id to use [0]‘,
                        default=0, type=int)
    parser.add_argument(‘--cpu‘, dest=‘cpu_mode‘,
                        help=‘Use CPU mode (overrides --gpu)‘,
                        action=‘store_true‘)
    parser.add_argument(‘--net‘, dest=‘demo_net‘, help=‘Network to use [vgg16]‘,
                        choices=NETS.keys(), default=‘vgg16‘)

    args = parser.parse_args()

    return args

if __name__ == ‘__main__‘:
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args() ##返回命令参数行,默认使用gpu和vgg16
    ##添加.pt文件,就是faster-rcnn的结构图
    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
                            ‘faster_rcnn_alt_opt‘, ‘faster_rcnn_test.pt‘)    ##添加.caffemodel文件,就是训练好的VGG16模型
    caffemodel = os.path.join(cfg.DATA_DIR, ‘faster_rcnn_models‘,
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError((‘{:s} not found.\nDid you run ./data/script/‘
                       ‘fetch_faster_rcnn_models.sh?‘).format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)  ##默认开启0设备号的gpu
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)  ##加载caffe网络

    print ‘\n\nLoaded network {:s}‘.format(caffemodel)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _= im_detect(net, im)  ##使用(300, 500, 3)全为1的dummy图片进行预检测,保留网络参数
    ##具体过程如下:##对dummy图片去均值,转换数据类型,然后用线性插值法resize成im_scale=2倍的图片,注意图片大小##不能超过(600,1000,3)的边界。接着把(600,1000,3)形式的图片或图片集##转化成(1,600,1000,3)的blobs,这里blobs的初始格式是取图片集的最大宽和高,且只有一张图片。##把blobs格式转换成(1,3,600,1000)的形式;到这里为止,_get_image_blob返回blob和im_scale_factors=2.0##_get_blobs返回dict形式的blobs和im_scale_factors,注意此时该blobs = {‘data‘ : blob, ‘rois‘ : None}##上面的blobs就是我们要操作的最终dict;##对该blobs添加blobs[‘im_info‘]栏,(600,1000,2),2是im_scales[0];##将caffe网络的data输入项(1,3,224,224)reshape成 blobs[‘data‘]的形状,即(1,3,600,1000)##把dict形式的blobs(3栏)搬移到dict形式的forward_kwargs(2栏),去掉了rois栏##然后把forward_kwargs送进net里面进行前向运行,输出blobs_out;##将net.blobs[‘rois‘].data,即将训练后rois层输出的数据保存到rois,##rois(104,5),将rois后四列缩小2倍回原来的图片规格,即相当于映射前放大2倍,映射后缩小2倍##对blobs_out[‘cls_prob‘]训练后数据保存到scores,blobs_out[‘cls_prob‘]是使用softmax层训练的结果;##得到的是分类的概率。##blobs_out[‘bbox_pred‘]训练后数据保存到box_deltas,然后对boxes相对box_deltas进行转换和裁剪;##boxes是roi层前的特征,box_deltas是fast-rcnn最终层后的特征,一个输入(104,5)一个输出(104,84);##这里涉及到bounding box regression原理,具体细节看另外一篇博客,其实就是Foreground Anchors和GT的拟合靠近;##上面注意boxes的后四列是框的四个点,而我们要转化成中心坐标,因此损失函数为预测的中心坐标和实际的平方函数##把预测的中心值转换回boxes的形式,重命名为pred_boxes##对pre_boxes进行裁剪,具体为负值变0,越界取边界##最后im_detect函数返回scores(104,21)和pred_boxes(104,84)
    im_names = [‘000456.jpg‘, ‘000542.jpg‘, ‘001150.jpg‘,
                ‘001763.jpg‘, ‘004545.jpg‘]
    for im_name in im_names:
        print ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~‘
        print ‘Demo for data/demo/{}‘.format(im_name)
        demo(net, im_name)
##根据路径加载要测试的图片1(375,500,3),利用cv读取图片1;##利用timer进行计时,##调用im_detect函数对图片1进行分类和定位,即返回scores和boxes;预处理时把(375,500,3)reshape(600,800,3)##打印对300个建议框进行检测(分类和回归)花费的时间;##将4列box和1列类合并成5列,命名为dets;##对每一个类进行nms(非极大值抑制)操作,nms的阈值为0.3,返回keep(内含26个数据的list),即26个框;##dets取这26个框,然后调用vis_detections函数来画图;##首先取分类得分大于0.5的行,如果没有大于0.5的行则认为该图不是类1,直接退出并进行类2的检测;##如果有大于0.5的行,则根据box的四个角画出框和在框上标注类别和得分,注意CONF_THRESH = 0.8得分以上才画出来;##加载图片2重复相应内容;
plt.show()

原文地址:https://www.cnblogs.com/hotsnow/p/9856745.html

时间: 2024-10-06 23:28:15

Faster RCNN算法代码解析的相关文章

【目标检测】Faster RCNN算法详解

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in Neural Information Processing Systems. 2015. 本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作.简单网络目标检测速度达到17fps,在P

RCNN学习笔记(5):faster rcnn

reference link: http://blog.csdn.net/shenxiaolu1984/article/details/51152614 http://blog.csdn.net/xyy19920105/article/details/50817725 思想 从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内.所有计算没有重复,完全在GPU中完成,大大提高了运行速度.

Faster RCNN代码理解(Python)

转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python的argparse 主要有–net_name,–gpu,–cfg等(在cfg中只是修改了几个参数,其他大部分参数在congig.py中,涉及到训练整个网络). cfg_from_file(args.cfg_file) 这里便是代用

Faster rcnn代码理解(1)

这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着Faster rcnn的训练流程来一步一步梳理,进入tools\train_faster_rcnn_alt_opt.py中: 首先从__main__入口处进入,如下: 上图中首先对终端中的命令行进行解析,获取相关的命令参数:然后利用mp.Queue()创建一个多线程的对象,再利用get_solvers

Faster rcnn代码理解(4)

上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是对应与输入图像大小(而且每一个roi大小都不同,因为先是禅城九种anchors,又经过回归,所以大小各不同),所以在ROIPoolingLayer层中,先将每一个roi区域映射到经过conv5的feature map上,然后roi对应于feature map上的这一块区域再经过pooling操作映射

深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络

深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络 资源获取链接:点击这里 第1章 课程介绍 本章节主要介绍课程的主要内容.核心知识点.课程涉及到的应用案例.深度学习算法设计通用流程.适应人群.学习本门课程的前置条件.学习后达到的效果等,帮助大家从整体上了解本门课程的整体脉络. 1-1 课程导学 第2章 目标检测算法基础介绍 本章节主要介绍目标检测算法的基本概念.传统的目标检测算法.目前深度学习目标检测主流方法(one-sta

检测算法简介及其原理——fast R-CNN,faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3

1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别

抖音去水印代码解析部分代码,抖音xgorgon还有设备参数生成算法

抖音xgorgon还有设备参数生成算法 xgorgon有了他做什么用呢? 可以获取用户所有作品列表 获取抖音搜索热门列表 获取正在直播的用户购物车数据 获取抖音 粉丝列表 如果老同一个设备去请求 就会请求不到数据, 而设备算法 就是让你去频繁去请求的时候. 下面就是部分代码示例,需要算法可以在向我发送邮件.[email protected] 在分享一下抖音的去水印代码解析,当然不只是这一种写法,还有很多种,你要了解他的原理. @PostMapping("geturl") public

Faster R-CNN论文详解

原文链接:http://lib.csdn.net/article/deeplearning/46182 paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks &创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search.EdgeBoxes等方法,速度上提升明显: