lua关于参数生命周期的研究

local num = 123

local str = "abc"

local tb ={}

数字和字符串类型的值作为参数传递的时候,是复制值,2个独立的内存地址

table类型的值传递的时候是传的地址(类似c++的指针或者索引),所以这里需要注意,任何保存索引的地方 修改对象值以后 其他的地方的索引对象值同步改变,因为是指向一个内存地址

时间: 2024-10-05 03:03:33

lua关于参数生命周期的研究的相关文章

Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

一:Receiver启动的方式设想 1. Spark Streaming通过Receiver持续不断的从外部数据源接收数据,并把数据汇报给Driver端,由此每个Batch Durations就可以根据汇报的数据生成不同的Job. 2. Receiver属于Spark Streaming应用程序启动阶段,那么我们找Receiver在哪里启动就应该去找Spark Streaming的启动. 3. Receivers和InputDStreams是一一对应的,默认情况下一般只有一个Receiver.

(版本定制)第9课:Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

本期内容: 1.Receiver启动方式的设想 2.Receiver启动源码彻底分析 一:Receiver启动方式的设想 1. Spark Streaming通过Receiver持续不断的从外部数据源接收数据,并把数据汇报给Driver端,由此每个Batch Durations就可以根据汇报的数据生成不同的Job. 2. Receiver是在Spark Streaming应用程序启动时启动的,那么我们找Receiver在哪里启动就应该去找Spark Streaming的启动. 3. Receiv

Spark 定制版:009~Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

本讲内容: a. Receiver启动的方式设想 b. Receiver启动源码彻底分析 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上一讲中,我们给大家具体分析了RDD的物理生成和逻辑生成过程,彻底明白DStream和RDD之间的关系,及其内部其他有关类的具体依赖等信息: a. DStream是RDD的模板,其内部generatedRDDs 保存了每个BatchDuration时间生成的RDD对象实例.DStream的依赖构成了RDD

Spark Streaming源码解读之生成全生命周期彻底研究与思考

本期内容 : DStream与RDD关系彻底研究 Streaming中RDD的生成彻底研究 问题的提出 : 1. RDD是怎么生成的,依靠什么生成 2.执行时是否与Spark Core上的RDD执行有什么不同的 3. 运行之后我们要怎么处理 为什么有第三点 : 是因为Spark Streaming 中会随着相关触发条件,窗口Window滑动的时候都会不断的产生RDD , 从最基本的层次考虑,RDD也是基本对象,每秒会产生RDD ,内存能不能完全容纳,每个处理完成后怎么进行管理? 一. 整个Spa

第9课:Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

一:Receiver启动的方式设想 1. Spark Streaming通过Receiver持续不断的从外部数据源接收数据,并把数据汇报给Driver端,由此每个Batch Durations就可以根据汇报的数据生成不同的Job. 2. Receiver属于Spark Streaming应用程序启动阶段,那么我们找Receiver在哪里启动就应该去找Spark Streaming的启动. 3. Receivers和InputDStreams是一一对应的,默认情况下一般只有一个Receiver.

Spark发行版笔记9:Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考

本节的主要内容: 一.Receiver启动的方式设想 二.Receiver启动源码彻底分析 Receiver的设计是非常巧妙和出色的,非常值得我们去学习.研究.借鉴. 在深入认识Receiver之前,我们有必要思考一下,如果没有Spark.Spark Streaming,我们怎么实现Reciver?数据不断接进来,我们该怎么做?该怎么启动Receiver呢?...... 首先,我们找到数据来源的入口,入口如下: 数据来源kafka.socket.flume等构建的都是基于InputDStream

Spark发行版笔记10:Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考

本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收

Spark版本定制第9天:Receiver在Driver的精妙实现全生命周期彻底研究和思考

本期内容: 1 Receiver生命周期 2 深度思考 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序.如果可以掌握Spark streaming这个复杂的应用程序,那么其他

Spark版本定制八:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

本期内容: 1.DStream与RDD关系彻底研究 2.Streaming中RDD的生成彻底研究 一.DStream与RDD关系彻底研究 课前思考: RDD是怎么生成的? RDD依靠什么生成?根据DStream来的 RDD生成的依据是什么? Spark Streaming中RDD的执行是否和Spark Core中的RDD执行有所不同? 运行之后我们对RDD怎么处理? ForEachDStream不一定会触发Job的执行,但是它一定会触发job的产生,和Job是否执行没有关系: 对于DStream