POJ 题目3020 Antenna Placement(二分图)

Antenna Placement

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7011   Accepted: 3478

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and
comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating
in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest,
which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r),
or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing
the points of interest in Sweden in the form of h lines, each containing w characters from the set [‘*‘,‘o‘]. A ‘*‘-character symbolises a point of interest, whereas a ‘o‘-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all ‘*‘-entries in the scenario‘s matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

Source

Svenskt M?sterskap i
Programmering/Norgesmesterskapet 2001

ac代码

#include<stdio.h>
#include<string.h>
int map[1010][1010],cut[1010][1010];
int link[101000],vis[101000],x,y,cnt;
char str[1010][1010];
int dfs(int u)
{
	int i;
	for(i=1;i<=cnt;i++)
	{
		if(!vis[i]&&map[u][i])
		{
			vis[i]=1;
			if(link[i]==-1||dfs(link[i]))
			{
				link[i]=u;
				return 1;
			}
		}
	}
	return 0;
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n,m,i,j;
		scanf("%d%d",&n,&m);
		for(i=0;i<n;i++)
		{
			scanf("%s",str[i]);
		}
		//	int x=0
		cnt=0;
		memset(cut,0,sizeof(cut));
		for(i=0;i<n;i++)
		{
			for(j=0;j<m;j++)
			{
				if(str[i][j]=='*')
					cut[i][j]=++cnt;
			}
		}
		memset(map,0,sizeof(map));
		for(i=0;i<n;i++)
		{
			for(j=0;j<m;j++)
			{
				if(cut[i][j])
				{
					if(j>0&&cut[i][j-1])
						map[cut[i][j]][cut[i][j-1]]=1;
					if(i>0&&cut[i-1][j])
						map[cut[i][j]][cut[i-1][j]]=1;
					if(j<m-1&&cut[i][j+1])
						map[cut[i][j]][cut[i][j+1]]=1;
					if(i<n-1&&cut[i+1][j])
						map[cut[i][j]][cut[i+1][j]]=1;
				}
			}
		}
		memset(link,-1,sizeof(link));
		int ans=0;
		for(i=1;i<=cnt;i++)
		{
			memset(vis,0,sizeof(vis));
			if(dfs(i))
				ans++;
		}
		printf("%d\n",cnt-ans/2);
	}
}
时间: 2024-10-06 20:15:25

POJ 题目3020 Antenna Placement(二分图)的相关文章

POJ 3020 Antenna Placement(二分图建图训练 + 最小路径覆盖)

题目链接:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6692   Accepted: 3325 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobi

POJ 3020 Antenna Placement(二分图 匈牙利算法)

题目网址:  http://poj.org/problem?id=3020 题意: 用椭圆形去覆盖给出所有环(即图上的小圆点),有两种类型的椭圆形,左右朝向和上下朝向的,一个椭圆形最多可以覆盖相邻的两个小圆点.   思路: 将每个小圆点看作是一个顶点,因为一个椭圆只能覆盖两个小圆点,我们就可以把这个图看成一个二分图.将相邻的两个点,一个看作是X集合内顶点,另一个看成是Y集合内顶点.但要注意的是一个顶点可能不止和一个顶点想连(如上图情况),所以我们要把上述情况看作是一个无向图,而不是有向图.无向图

POJ - 3020 ? Antenna Placement 二分图最大匹配

http://poj.org/problem?id=3020 首先注意到,答案的最大值是'*'的个数,也就是相当于我每用一次那个技能,我只套一个'*',是等价的. 所以,每结合一对**,则可以减少一次使用,所以就是找**的最大匹配数目. 对于每一个*,和它的上下左右连接一条边(如果是*才连) 那么,这个图是一个二分图,怎么找到左边集合S,右边集合T呢? 我的做法是染色一次,就可以. 这题应该不能贪心吧. 3 5 ***** o***o o*o*o 其实也可以不分开S.T 跑一发最大匹配,然后匹配

POJ - 3020 Antenna Placement 二分图 最小路径覆盖

题目大意:有n个城市,要在这n个城市上建立无线电站,每个无线电站只能覆盖2个相邻的城市,问至少需要建多少个无线电站 解题思路:英语题目好坑,看了半天.. 这题和POJ - 2446 Chessboard类似 可以将所有城市分成两个点集,那么之间的连线就代表无线电站的覆盖关系了. 因为所有城市都要覆盖到,所以根据关系,求出最小路径覆盖就能覆盖所有城市了 #include<cstdio> #include<algorithm> #include<cstring> #incl

POJ——T 3020 Antenna Placement

http://poj.org/problem?id=3020 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9844   Accepted: 4868 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden

(poj)3020 Antenna Placement 匹配

题目链接 : http://poj.org/problem?id=3020 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new

POJ 3020 Antenna Placement ,二分图的最小路径覆盖

题目大意: 一个矩形中,有N个城市'*',现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市. 问至少放置多少个基站才能使得所有的城市都覆盖无线? 无向二分图的最小路径覆盖 = 顶点数 –  最大二分匹配数/2 路径覆盖就是在图中找一些路径,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联: #include<cstdio> #include<cstring> #include<vector> #include<algor

POJ 3020 Antenna Placement(二分图匹配)

POJ 3020 Antenna Placement 题目链接 题意:给定一个地图,'*'的地方要被覆盖上,每次可以用1 x 2的矩形去覆盖,问最少用几个能覆盖 思路:二分图匹配求最大独立集,相邻*之间连边,然后求最大独立集即可 看这数据范围,用轮廓线dp应该也能搞 代码: #include <cstdio> #include <cstring> #include <vector> #include <algorithm> using namespace s

二分图匹配(匈牙利算法) POJ 3020 Antenna Placement

题目传送门 1 /* 2 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 3 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 4 */ 5 #include <cstdio> 6 #include <algorithm> 7 #include <cstring> 8 #include <vector> 9 using namespace std; 10 11 const int MAXN = 4e