Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let‘s consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID‘s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, ... k, and Ak+1 > Bk+1.
Sample Input:
20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19
Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2 思路:DFS 建立好树
1 #include <iostream> 2 #include <cstdio> 3 #include <vector> 4 #include <algorithm> 5 using namespace std; 6 #define MAX 110 7 struct Node 8 { 9 int weight; 10 vector<int>child; 11 }node[MAX]; 12 int path[MAX]; 13 int pt=0; 14 int N,M,S; 15 bool cmp(int a,int b) 16 { 17 return node[a].weight>node[b].weight; 18 } 19 void Print() 20 { 21 for(int i=0;i<pt;i++) 22 { 23 printf("%d",node[path[i]].weight); 24 if(i!=pt-1) 25 putchar(‘ ‘); 26 } 27 putchar(‘\n‘); 28 } 29 int sum=0; 30 void DFS(int index) 31 { 32 sum+=node[index].weight; 33 path[pt++]=index; 34 if(sum>=S||node[index].child.size()==0) 35 { 36 if(sum==S&&node[index].child.size()==0) 37 Print(); 38 sum-=node[index].weight; 39 pt--; 40 return; 41 } 42 for(int i=0;i<node[index].child.size();i++) 43 { 44 DFS(node[index].child[i]); 45 } 46 sum-=node[index].weight; 47 pt--; 48 } 49 int main(int argc, char *argv[]) 50 { 51 scanf("%d%d%d",&N,&M,&S); 52 for(int i=0;i<N;i++) 53 { 54 scanf("%d",&node[i].weight); 55 } 56 for(int i=0;i<M;i++) 57 { 58 int father,k; 59 scanf("%d%d",&father,&k); 60 for(int i=0;i<k;i++) 61 { 62 int tem; 63 scanf("%d",&tem); 64 node[father].child.push_back(tem); 65 } 66 sort(node[father].child.begin(),node[father].child.end(),cmp); 67 } 68 DFS(0); 69 return 0; 70 }