1 高精度(含大数开方)+二分
一个技巧和三点注意:
技巧:假设k^n=p;(k的n次方),那么p的位数/n得到的是k的位数!例如:n=7,p=4357186184021382204544,p的位数为22,用22/7的结果向上取整,得到4,即为k的位数,也就是说k的取值范围是1000~9999。(引自code_pang)不利用这一点,高精度+直接二分,也会超时。用这一个技巧合理缩小二分的范围。
注意:看code的main中的注释。
(二分思想不熟练,因为二分算法很高效,所以一定要暴力点直接确定left和right,然后根据情况,优化也是将left变大和right变小,而不会是其他奇怪的情况。另外,注意left=mid+1,right=mid-1,这很重要)
#include <stdio.h> #include <math.h> #include <string.h> #include <iostream> #include <string> #include <algorithm> using namespace std; const int numlen = 105; // 位数 int max(int a, int b) { return a>b?a:b; } struct bign { int len, s[numlen]; bign() { memset(s, 0, sizeof(s)); len = 1; } bign(int num) { *this = num; } bign(const char *num) { *this = num; } bign operator = (const int num) { char s[numlen]; sprintf(s, "%d", num); *this = s; return *this; } bign operator = (const char *num) { len = strlen(num); while(len > 1 && num[0] == '0') num++, len--; for(int i = 0;i < len; i++) s[i] = num[len-i-1] - '0'; return *this; } void deal() { while(len > 1 && !s[len-1]) len--; } bign operator + (const bign &a) const { bign ret; ret.len = 0; int top = max(len, a.len) , add = 0; for(int i = 0;add || i < top; i++) { int now = add; if(i < len) now += s[i]; if(i < a.len) now += a.s[i]; ret.s[ret.len++] = now%10; add = now/10; } return ret; } bign operator - (const bign &a) const { bign ret; ret.len = 0; int cal = 0; for(int i = 0;i < len; i++) { int now = s[i] - cal; if(i < a.len) now -= a.s[i]; if(now >= 0) cal = 0; else { cal = 1; now += 10; } ret.s[ret.len++] = now; } ret.deal(); return ret; } bign operator * (const bign &a) const { bign ret; ret.len = len + a.len; for(int i = 0;i < len; i++) { for(int j = 0;j < a.len; j++) ret.s[i+j] += s[i]*a.s[j]; } for(int i = 0;i < ret.len; i++) { ret.s[i+1] += ret.s[i]/10; ret.s[i] %= 10; } ret.deal(); return ret; } //乘以小数,直接乘快点 bign operator * (const int num) { bign ret; ret.len = 0; int bb = 0; for(int i = 0;i < len; i++) { int now = bb + s[i]*num; ret.s[ret.len++] = now%10; bb = now/10; } while(bb) { ret.s[ret.len++] = bb % 10; bb /= 10; } ret.deal(); return ret; } bign operator / (const bign &a) const { bign ret, cur = 0; ret.len = len; for(int i = len-1;i >= 0; i--) { cur = cur*10; cur.s[0] = s[i]; while(cur >= a) { cur -= a; ret.s[i]++; } } ret.deal(); return ret; } bign operator % (const bign &a) const { bign b = *this / a; return *this - b*a; } bign operator += (const bign &a) { *this = *this + a; return *this; } bign operator -= (const bign &a) { *this = *this - a; return *this; } bign operator *= (const bign &a) { *this = *this * a; return *this; } bign operator /= (const bign &a) { *this = *this / a; return *this; } bign operator %= (const bign &a) { *this = *this % a; return *this; } bool operator < (const bign &a) const { if(len != a.len) return len < a.len; for(int i = len-1;i >= 0; i--) if(s[i] != a.s[i]) return s[i] < a.s[i]; return false; } bool operator > (const bign &a) const { return a < *this; } bool operator <= (const bign &a) const { return !(*this > a); } bool operator >= (const bign &a) const { return !(*this < a); } bool operator == (const bign &a) const { return !(*this > a || *this < a); } bool operator != (const bign &a) const { return *this > a || *this < a; } string str() const { string ret = ""; for(int i = 0;i < len; i++) ret = char(s[i] + '0') + ret; return ret; } }; istream& operator >> (istream &in, bign &x) { string s; in >> s; x = s.c_str(); return in; } ostream& operator << (ostream &out, const bign &x) { out << x.str(); return out; } // 大数开平方 bign Sqrt(bign x) { int a[numlen/2]; int top = 0; for(int i = 0;i < x.len; i += 2) { if(i == x.len-1) { a[top++] = x.s[i]; } else a[top++] = x.s[i] + x.s[i+1]*10; } bign ret = (int)sqrt((double)a[top-1]); int xx = (int)sqrt((double)a[top-1]); bign pre = a[top-1] - xx*xx; bign cc; for(int i = top-2;i >= 0; i--) { pre = pre*100 + a[i]; cc = ret*20; for(int j = 9;j >= 0; j--) { bign now = (cc + j)*j; if(now <= pre) { ret = ret*10 + j; pre -= now; break; } } } return ret; } int main(){ //test: bign aa=6; bign bb=7; bign cc=(aa+bb)/2; cout<<cc<<endl; int a; bign b; int flag; while(cin>>a>>b){ flag=1; int len=b.len; int pos; if(len%a==0){ pos=len/a; } else if(len%a!=0){ pos=len/a+1; } bign sum=1; bign mid; bign left=pow(10.0,(int)pos-1); bign right=pow(10.0,(int)pos); /*在math.h中,函数pow有三种重载形式: long double pow(long double,int) float pow(float,int) double pow(double,int) 对于所给的参数int,int,如果编译器无法判断应该匹配哪个函数,因此报编译错误 可以将代码改为pow(10.0,(int)i) */ while(left<=right){ mid=(left+right)/2; sum=1; for(int i=1;i<=a;i++){ sum=mid*sum; } if(sum==b){ cout<<mid<<endl; break; } else if(sum<b){ left=mid+1;//二分尤其不要忘记,left=mid+1 而非=mid! } else if(sum>b){ right=mid-1;//二分尤其不要忘记,right=mid-1 而非=mid! } if(left>right){ flag=0; break; } } //然而OJ给的数据并不是像题目中所说k一定是整数,所以最后取满足k^n=p的不大于k的最大的整数。 //另外,还要注意最后判断一步时,也要判断sum>b是否会出现这种情况,如果不判断提交WA,判断就AC了。但为什么还要加sum>b的判断?!不理解。 if(!flag){ mid=(left+right)/2; sum=1; for(int i=1;i<=a;i++){ sum=mid*sum; } if(sum>b){ cout<<mid-1<<endl; } else{ cout<<mid<<endl; } } } }
2
直接用double,pow。
先分清数值范围和有效数字的区别,以下是double的描述:
C语言中,双精度浮点(double)型,占8 个字节(64位)内存空间。其数值范围为1.7E-308~1.7E+308,双精度完全保证的有效数字是15位,16位只是部分数值有保证,而单精度保证7位有效数字,部分数值有8位有效数.
所以对于此题中,p<=10^101 ,(10的101次方),可以用double装进去,但是如果cin>>p,cout<<p,就只显示16位,多了的就变成0了,但是对于本题的测试数据而言,以simple input中最后一个为例:
如果测试数据为:
7 4357186184021382204544
实际上所处理数据是:
7 4357186184021382000000
那4357186184021382000000开7次方的结果自然就是1234。
为什么不是1233或者1235呢?
12337=4332529576639313702577
12347=4357186184021382204544
12357=4381962969567270546875
可以看出在double型所能表示的精度范围内,它们三个值已经被区分开了。(引用自code_pang)
拓展:
C语言里对float类型数据的表示范围为-3.4*10^38~+3.4*10^38。double为-1.7*10^-308~1.7*10^308,long
double为-1.2*10^-4932~1.2*10^4932.
类型 |
比特(位)数 |
有效数字 |
数值范围 |
float |
32 |
6~7 |
-3.4*10^38~+3.4*10^38 |
double |
64 |
15~16 |
-1.7*10^-308~1.7*10^308 |
long double |
128/ |
18~19 |
-1.2*10^-4932~1.2*10^4932 |
(引用自Roberl)
#include <iostream> #include <math.h> using namespace std; int main(){ double a,b,c; while(cin>>a>>b){ if(a==0){ break; } cout<<pow(b,1/a)<<endl; } return 0; }