LAD线性判别模型简介及sklearn参数

本文LDA指线性判别模型,并非自然语言处理中的主题模型LDA。

1.LDA简介

  LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用。LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。如下图

  从直观上可以看出,右图要比左图的投影效果好,因为右图的黑色数据和蓝色数据各个较为集中,且类别之间的距离明显。左图则在边界处数据混杂。以上就是LDA的主要思想了,当然在实际应用中,我们的数据是多个类别的,我们的原始数据一般也是超过二维的,投影后的也一般不是直线,而是一个低维的超平面。

  LDA除了可以用于降维以外,还可以用于分类。一个常见的LDA分类基本思想是假设各个类别的样本数据符合高斯分布,这样利用LDA进行投影后,可以利用极大似然估计计算各个类别投影数据的均值和方差,进而得到该类别高斯分布的概率密度函数。当一个新的样本到来后,我们可以将它投影,然后将投影后的样本特征分别带入各个类别的高斯分布概率密度函数,计算它属于这个类别的概率,最大的概率对应的类别即为预测类别。(不过LDA似乎很少应用于分类)

2.LDA降维与PCA区别

  相同点:

    1)两者均可以对数据进行降维。

    2)两者在降维时均使用了矩阵特征分解的思想。

    3)两者都假设数据符合高斯分布。

  不同点:

    1)LDA是有监督的降维方法,而PCA是无监督的降维方法

    2)LDA降维最多降到类别数k-1的维数,而PCA没有这个限制。

    3)LDA除了可以用于降维,还可以用于分类。

    4)LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向。

  从下图形象的看出,在左图数据分布下LDA比PCA降维较优,右图数据分布下,PCA比LDA较优。

3.LinearDiscriminantAnalysis参数  class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver=‘svd‘shrinkage=Nonepriors=Nonen_components=Nonestore_covariance=Falsetol=0.0001)

  • solver:str,求解算法, 
    取值可以为:

    • svd:使用奇异值分解求解,不用计算协方差矩阵,适用于特征数量很大的情形,无法使用参数收缩(shrinkage)
    • lsqr:最小平方QR分解,可以结合shrinkage使用
    • eigen:特征值分解,可以结合shrinkage使用
  • shrinkage:str or float,是否使用参数收缩 
    取值可以为: priors:array,用于LDA中贝叶斯规则的先验概率,当为None时,每个类priors为该类样本占总样本的比例;当为自定义值时,如果概率之和不为1,会按照自定义值进行归一化
    • None:不适用参数收缩
    • auto:str,使用Ledoit-Wolf lemma
    • 浮点数:自定义收缩比例
  • components:int,需要保留的特征个数,小于等于n-1
  • store_covariance:是否计算每个类的协方差矩阵,0.19版本删除

LinearDiscriminantAnalysis类的fit方法

??fit()方法里根据不同的solver调用的方法均为LinearDiscriminantAnalysis的类方法

  fit()返回值:

  • selfLinearDiscriminantAnalysis实例对象

属性Attributes:

  • covariances_:每个类的协方差矩阵, shape = [n_features, n_features]
  • means_:类均值,shape = [n_classes, n_features]
  • priors_:归一化的先验概率
  • rotations_:LDA分析得到的主轴,shape [n_features, n_component]
  • scalings_:数组列表,每个高斯分布的方差σ

参考:

https://www.cnblogs.com/pinard/p/6244265.html ;

https://blog.csdn.net/qsczse943062710/article/details/75977118

原文地址:https://www.cnblogs.com/solong1989/p/9593555.html

时间: 2024-11-08 23:10:54

LAD线性判别模型简介及sklearn参数的相关文章

tflearn kears GAN官方demo代码——本质上GAN是先训练判别模型让你能够识别噪声,然后生成模型基于噪声生成数据,目标是让判别模型出错。GAN的过程就是训练这个生成模型参数!!!

GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene

机器学习理论基础学习3.4--- Linear classification 线性分类之Gaussian Discriminant Analysis高斯判别模型

一.什么是高斯判别模型? 二.怎么求解参数? 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10284255.html

生成模型与判别模型(转)

生成模型与判别模型 [email protected] http://blog.csdn.net/zouxy09 一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否.若有错误,还望各位前辈不吝指正,以免小弟一错再错.在此谢过. 一.决策函数Y=f(X)或者条件概率分布P(Y|X) 监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y.这个模型的一般形式为决策函数Y=f(X)或者条件概率分布P(Y|X).      

【转载】判别模型、生成模型与朴素贝叶斯方法

判别模型.生成模型与朴素贝叶斯方法 转载时请注明来源:http://www.cnblogs.com/jerrylead 1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率.形式化表示为,在参数确定的情况下,求解条件概率.通俗的解释为在给定特征后预测结果出现的概率. 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率.换一种思路,我们可以根据山羊的特征首先学习出一个山羊

【转载】先验概率与后验概率,生成模型与判别模型

[注]事情还没有发生,要求这件事情发生的可能性的大小,是先验概率.事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率 Generative Model 与 Discriminative Model [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测- 判别模型(Discriminative Model):有限样本==>判别函数 = 预测模型==>预测 [简介] 简单的说,假设o是观察值,

Logistic Regression 模型简介

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛.本文作为美团机器学习InAction系列中的一篇, 主要关注逻辑回归算法的数学模型和参数求解方法,最后也会简单讨论下逻辑回归和贝叶斯分类的关系,以及在多分类问题上的推广. 逻辑回归 问题 实际工作中,我们可能会遇到如下问题: 预测一个用户是否点击特定的商品 判断用户的性别 预测用户是否会购买给定的品类 判断一条评论是正面的还是负面的 这些都可以看做是分类问题,更准确地,都可以

生成模型 VS 判别模型 (含义、区别、对应经典算法)

从概率分布的角度考虑,对于一堆样本数据,每个均有特征Xi对应分类标记yi. 生成模型:学习得到联合概率分布P(x,y),即特征x和标记y共同出现的概率,然后求条件概率分布.能够学习到数据生成的机制. 判别模型:学习得到条件概率分布P(y|x),即在特征x出现的情况下标记y出现的概率. 数据要求:生成模型需要的数据量比较大,能够较好地估计概率密度:而判别模型对数据样本量的要求没有那么多. 两者的优缺点如下图,摘自知乎 生成模型:以统计学和Bayes作为理论基础 1.朴素贝叶斯: 通过学习先验概率分

判别模型和生成模型

我们有时称判别模型求的是条件概率,生成模型求的是联合概率. 常见的判别模型有线性回归.对数回归.线性判别分析.支持向量机.boosting.条件随机场.神经网络等. 常见的生产模型有隐马尔科夫模型.朴素贝叶斯模型.高斯混合模型.LDA.Restricted Boltzmann Machine等. 判别方法:由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型.基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型. 生成方法:由数据学习联

生成模型和判别模型(转)

引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X).监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别为生成模型(generative model)和判别模型(discriminative model). 决策函数和条件概率分布 决策函数Y=f(X) 决策函数Y=f(X)