[Sdoi2010]粟粟的书架

Description

幸福幼儿园 B29 班的粟粟是一个聪明机灵、乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章。粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行、左数第j 列摆放的书有Pi,j页厚。粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取一个指定的苹果。粟粟家果树上的苹果有的高、有的低,但无论如何凭粟粟自己的个头都难以摘到。不过她发现, 如果在脚下放上几本书,就可以够着苹果;她同时注意到,对于第 i 天指定的那个苹果,只要她脚下放置书的总页数之和不低于Hi,就一定能够摘到。由于书架内的书过多,父母担心粟粟一天内就把所有书看完而耽误了上幼儿园,于是每天只允许粟粟在一个特定区域内拿书。这个区域是一个矩形,第 i 天给定区域的左上角是上数第 x1i行的左数第 y1i本书,右下角是上数第 x2i行的左数第y2i本书。换句话说,粟粟在这一天,只能在这﹙x2i-x1i+1﹚×﹙y2i-y1i+1﹚本书中挑选若干本垫在脚下,摘取苹果。粟粟每次取书时都能及时放回原位,并且她的书架不会再撤下书目或换上新书,摘苹果的任务会一直持续 M天。给出每本书籍的页数和每天的区域限制及采摘要求,请你告诉粟粟,她每天至少拿取多少本书,就可以摘到当天指定的苹果。

Input

第一行是三个正整数R,C,M。

接下来是一个R行C列的矩阵,从上到下、从左向右依次给出了每本书的页数Pi,j。

接下来M行,第i行给出正整数x1i,y1i,x2i,y2i,Hi,表示第i天的指定区域是﹙x1i,y1i﹚与﹙x2i,y2i﹚间的矩形,总页数之和要求不低于Hi。

保证1≤x1i≤x2i≤R,1≤y1i≤y2i≤C。

Output

有M行,第i 行回答粟粟在第 i 天时为摘到苹果至少需要 拿取多少本书。如果即使取走所有书都无法摘到苹果,则在该行输出“Poor QLW” (不含引号)。

Sample Input 1

5 5 7

14 15 9 26 53

58 9 7 9 32

38 46 26 43 38

32 7 9 50 28

8 41 9 7 17

1 2 5 3 139

3 1 5 5 399

3 3 4 5 91

4 1 4 1 33

1 3 5 4 185

3 3 4 3 23

3 1 3 3 108

Sample Output 1

6

15

2

Poor QLW

9

1

3

Sample Input 2

1 10 7

14 15 9 26 53 58 9 7 9 32

1 2 1 9 170

1 2 1 9 171

1 5 1 7 115

1 1 1 10 228

1 4 1 4 45704571

1 1 1 1 1

1 7 1 8 16

Sample Output 2

6

7

3

10

Poor QLW

1

2

HINT

对于 10%的数据,满足 R, C≤10

对于 20%的数据,满足 R, C≤40

对于 50%的数据,满足 R, C≤200,M≤200,000

另有 50%的数据,满足 R=1,C≤500,000,M≤20,000

对于 100%的数据,满足 1≤Pi,j≤1,000,1≤Hi≤2,000,000,000

首先这不是一道题,这是两道题。。。

前50%的数据,R,C≤200,可以用\(sum[i][j][k]\)代表(1,1)到(i,j)位置的矩阵中大于k的数之和,\(cnt[i][j][k]\)则记录大于k的数的个数,每次询问的时候二分出一个最小的满足要求的k,判断是否可行,但是要注意最后的k不一定要取满

后面50%的数据是一个序列,用主席树求总和和大于h的数的个数,查找的时候和右子树的sum比较,类似于Kth查询,如果往左子树走就加上右子树的点的个数,并且查找的值减去右子树的sum,最后在叶子节点判断是否要取满即可

详细见代码

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
    int x=0,f=1;char ch=getchar();
    for (;ch<‘0‘||ch>‘9‘;ch=getchar())  if (ch==‘-‘)    f=-1;
    for (;ch>=‘0‘&&ch<=‘9‘;ch=getchar())    x=(x<<1)+(x<<3)+ch-‘0‘;
    return x*f;
}
inline void print(int x){
    if (x>=10)  print(x/10);
    putchar(x%10+‘0‘);
}
const int N=5e5,M=1e7,K=2e2,V=1e3;
int R,C,m;
namespace Prefix_solve{
    int sum[K+10][K+10][V+10],cnt[K+10][K+10][V+10];
    int get_sum(int x1,int y1,int x2,int y2,int k){
        return sum[x2][y2][k]+sum[x1-1][y1-1][k]-sum[x2][y1-1][k]-sum[x1-1][y2][k];
    }
    int get_cnt(int x1,int y1,int x2,int y2,int k){
        return cnt[x2][y2][k]+cnt[x1-1][y1-1][k]-cnt[x2][y1-1][k]-cnt[x1-1][y2][k];
    }
    void main(){
        for (int i=1;i<=R;i++){
            for (int j=1;j<=C;j++){
                int x=read();
                for (int k=1;k<=V;k++){//预处理
                    sum[i][j][k]=sum[i-1][j][k]+sum[i][j-1][k]-sum[i-1][j-1][k]+(x>=k?x:0);
                    cnt[i][j][k]=cnt[i-1][j][k]+cnt[i][j-1][k]-cnt[i-1][j-1][k]+(x>=k?1:0);
                }

            }
        }
        for (int i=1;i<=m;i++){
            int a=read(),b=read(),c=read(),d=read(),h=read();
            int l=1,r=V,res=-1;
            while (l<=r){//二分出一个最小的k,后面去询问答案
                int mid=(l+r)>>1;
                if (get_sum(a,b,c,d,mid)>=h)    res=mid,l=mid+1;
                else    r=mid-1;
            }
            if (res==-1){//无解的情况
                printf("Poor QLW\n");
                continue;
            }
            //因为不一定要取满,因此把多余的部分减掉
            printf("%d\n",get_cnt(a,b,c,d,res)-(get_sum(a,b,c,d,res)-h)/res);
        }
    }
};
namespace Chairman_solve{
    int root[N+10],val[N+10],list[N+10];
    struct Segment{
        int ls[M+10],rs[M+10],cnt[M+10],sum[M+10],tot;
        void insert(int &k,int p,int l,int r,int v){
            cnt[k=++tot]=cnt[p]+1;
            ls[k]=ls[p],rs[k]=rs[p];
            sum[k]=sum[p]+list[v];
            if (l==r)   return;
            int mid=(l+r)>>1;
            if (v<=mid) insert(ls[k],ls[p],l,mid,v);
            else    insert(rs[k],rs[p],mid+1,r,v);
        }
        int Query(int k,int p,int l,int r,int v){//v表示需要凑出的大小
            if (l==r)   return (v-1)/list[l]+1;//不一定要取满
            int mid=(l+r)>>1;
            //从右子树判断,越大越好,和Kth查询略有不同
            if (v<=sum[rs[p]]-sum[rs[k]])   return Query(rs[k],rs[p],mid+1,r,v);
            else    return cnt[rs[p]]-cnt[rs[k]]+Query(ls[k],ls[p],l,mid,v-(sum[rs[p]]-sum[rs[k]]));
            //查询左边的时候把右边的数目全部加起来
        }
    }Tree;
    void main(){
        for (int i=1;i<=C;i++)  list[i]=val[i]=read();
        sort(list+1,list+1+C);
        int T=unique(list+1,list+1+C)-list-1;
        for (int i=1;i<=C;i++)  val[i]=lower_bound(list+1,list+1+T,val[i])-list;
        for (int i=1;i<=C;i++)  Tree.insert(root[i],root[i-1],1,T,val[i]);
        //离散化后建树
        for (int i=1;i<=m;i++){
            int a=read(),b=read(),c=read(),d=read(),h=read();
            //整个区间加起来都不满足,就无解;否则直接去找
            if (Tree.sum[root[d]]-Tree.sum[root[b-1]]<h)    printf("Poor QLW\n");
            else    printf("%d\n",Tree.Query(root[b-1],root[d],1,T,h));
        }
    }
};
int main(){
    R=read(),C=read(),m=read();
    if (R==1){
        Chairman_solve::main();//主席树
        return 0;
    }
    Prefix_solve::main();//二维前缀和
    return 0;
}

原文地址:https://www.cnblogs.com/Wolfycz/p/9592179.html

时间: 2024-10-11 16:34:40

[Sdoi2010]粟粟的书架的相关文章

1926: [Sdoi2010]粟粟的书架

1926: [Sdoi2010]粟粟的书架 Time Limit: 30 Sec  Memory Limit: 552 MBSubmit: 807  Solved: 321[Submit][Status][Discuss] Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Co rmen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行.左数第j 列 摆放的书有Pi,j

[SDOI2010]粟粟的书架 [主席树]

[SDOI2010]粟粟的书架 考虑暴力怎么做 显然是提取出来 (x2-x1+1)*(y2-y1+1) 个数字拿出来 然后从大到小排序 然后就可以按次取数了- 然而接下来看数据范围 \(50\%\ r,c\leq 200\) \(50\%\ r=1,c\leq 5*10^5\) 值域 \(\in [1,1000]\) 对于前 50% 可以用个前缀和搞定- 令 \(sum_{i,j,k}\) 为 大于 k 的前缀和 \(num_{i,j,k}\) 为 大于 k 的前缀和数量 然后愉快的二分? 另外

【BZOJ1926】【SDOI2010】粟粟的书架 [主席树]

粟粟的书架 Time Limit: 30 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章. 粟粟家中有一个 R行C列 的巨型书架,书架的每一个位置都摆有一本书,上数第 i 行.左数第 j 列摆放的书有Pi,j页厚. 粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取

bzoj1926 [Sdoi2010]粟粟的书架

Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行.左数第j 列摆放的书有Pi,j页厚.粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取一个指定的苹果.粟粟家果树上的苹果有的高.有的低,但无论如何凭粟粟自己的个头都难以摘到.不过她发现, 如果在脚下放上几本书,就可以够着苹果:她同时注意到

BZOJ1926 [Sdoi2010]粟粟的书架 【主席树 + 二分 + 前缀和】

题目 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Co rmen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行.左数第j 列 摆放的书有Pi,j页厚.粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取一个指定的 苹果.粟粟家果树上的苹果有的高.有的低,但无论如何凭粟粟自己的个头都难以摘到.不过她发现, 如果在脚 下放上几本书,就可以够着苹果:她同时注意到,对于第

【刷题】BZOJ 1926 [Sdoi2010]粟粟的书架

Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行.左数第j 列摆放的书有Pi,j页厚.粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取一个指定的苹果.粟粟家果树上的苹果有的高.有的低,但无论如何凭粟粟自己的个头都难以摘到.不过她发现, 如果在脚下放上几本书,就可以够着苹果:她同时注意到

【BZOJ-1926】粟粟的书架 二分 + 前缀和 + 主席树

1926: [Sdoi2010]粟粟的书架 Time Limit: 30 Sec  Memory Limit: 552 MBSubmit: 616  Solved: 238[Submit][Status][Discuss] Description 幸福幼儿园 B29 班的粟粟是一个聪明机灵.乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章.粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行.左数第j 列摆放的书有Pi,j页厚

粟粟的书架题解

粟粟的书架题解 第一次见到这种二合一的题, 开始的时候居然死磕二维主席树, 又是屈辱看题解系列, 其实很比较好做 第一部分\(R, C≤200,M≤200000,1≤Pi,j≤1,000\) 这一部分可以用两个数组来记录: \(num[i][j][k]\):代表1~i,1~j的矩形中小于等于k的书页数量, \(v[i][j][k]\):代表1~i,1~j的矩形中小于等于k的书页页数之和. 二分最大书页页数,找到满足矩阵内v值大于给定h的最小值,输出对应num, 预处理时用二维前缀和的方式维护即可

AC日记——[Sdoi2010]粟粟的书架 bzoj 1926

1926 思路: 主席树+二分水题: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 500005 #define maxr 205 #define maxn_ maxn*13 #define FalseAns "Poor QLW" int n,m,q,lc[maxn_],rc[maxn_],num[maxn_],ci[maxn_],tot,root[maxn]; int ai[maxn],bi[