1018 Public Bike Management (30)(30 分)

时间限制400 ms
内存限制65536 kB
代码长度限制16000 B

There is a public bike service in Hangzhou City which provides great
convenience to the tourists from all over the world. One may rent a bike
at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the
real-time capacity of all the stations. A station is said to be in
perfect condition if it is exactly half-full. If a station is full or
empty, PBMC will collect or send bikes to adjust the condition of that
station to perfect. And more, all the stations on the way will be
adjusted as well.

When a problem station is reported, PBMC will always choose the
shortest path to reach that station. If there are more than one shortest
path, the one that requires the least number of bikes sent from PBMC
will be chosen.

Figure 1
Figure 1 illustrates an example. The stations are represented by
vertices and the roads correspond to the edges. The number on an edge is
the time taken to reach one end station from another. The number
written inside a vertex S is the current number of bikes stored at S.
Given that the maximum capacity of each station is 10. To solve the
problem at S3, we have 2 different shortest paths:

  1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from
    PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3,
    so that both stations will be in perfect conditions.
  2. PBMC -> S2 -> S3. This path requires the same time as path
    1, but only 3 bikes sent from PBMC and hence is the one that will be
    chosen.

Input Specification:

Each input file contains one test case. For each case, the first line
contains 4 numbers: Cmax (<= 100), always an even number, is the
maximum capacity of each station; N (<= 500), the total number of
stations; Sp, the index of the problem station (the stations are
numbered from 1 to N, and PBMC is represented by the vertex 0); and M,
the number of roads. The second line contains N non-negative numbers Ci
(i=1,…N) where each Ci is the current number of bikes at Si
respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and
Tij which describe the time Tij taken to move betwen stations Si and Sj.
All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the
number of bikes that PBMC must send. Then after one space, output the
path in the format: 0->S1->…->Sp. Finally after another space,
output the number of bikes that we must take back to PBMC after the
condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires
minimum number of bikes that we must take back to PBMC. The judge’s data
guarantee that such a path is unique.

Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0

上去一看最短路,顺便附带空缺(need)和多余(nneed)的个数记录,然后有两个点没过,抠了半天,他的要求是这条路径中,如果有某个点缺车,而前面总的多余的话,可以填空缺,如果前面不多,这里的空缺就只能由总站提供,我一直以为他是在一条路径走个来回,某个点多余的可以同时填补前面或者后面的空缺,再者,要求出所有的最短路径,然后找出最优的。

不能只用最短路去满足所有要求,单纯对于一个不是查询点的点,假如按照最优去更新他,那么可能是不满足条件的,从他到目标点的路上可能有过多的空缺,需要填补,这个时候就希望在这个点之前有足够多的多余,可是总的要求是在到某点路径同样短且空缺相同的情况下,多余的车辆尽量少,就与后方高需求矛盾了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int c;///每个车站最大容量
int n;///车站的总个数
int p;///要求车站的编号
int m;///道路的条数
int current[501];///各车站当前车辆数
int road[501][501];///两车站距离
int dis[501];///0到i路径的长度
int vis[501];///标记访问过该车站没有
vector<int> pathfrom[501];///记录最短路径来源
vector<int> temppath;///临时路径记录
vector<int> path;///记录最佳路径
int perfect;///最佳状态
int minneed = inf,minnneed = inf;
int u,v,w;
void dfs(int ve)
{
    if(!ve)
    {
        int need = 0,nneed = 0;
        for(int i = temppath.size() - 2;i >= 0;i --)
        {
            if(current[temppath[i]] >= 0)nneed += current[temppath[i]];
            else
            {
                if(nneed + current[temppath[i]] >= 0)
                {
                    nneed += current[temppath[i]];
                }
                else
                {
                    need -= (nneed + current[temppath[i]]);
                    nneed = 0;
                }
            }
        }
        if(need < minneed)minneed = need,minnneed = nneed,path = temppath;
        else if(need == minneed && nneed < minnneed)minnneed = nneed,path = temppath;
        return;
    }
    for(int i = 0;i < pathfrom[ve].size();i ++)
    {
        int d = pathfrom[ve][i];
        temppath.push_back(d);
        dfs(d);
        temppath.pop_back();
    }
}
int main()
{
    scanf("%d%d%d%d",&c,&n,&p,&m);
    c /= 2;
    perfect -= c * n;
    for(int i = 1;i <= n;i ++)
    {
        scanf("%d",&current[i]);
        current[i] -= c;
    }
    for(int i = 0;i <= n;i ++)
    {
        for(int j = 0;j <= n;j ++)
        {
            road[i][j] = inf;
        }
        dis[i] = inf;
        road[i][i] = 0;
    }
    for(int i = 0;i < m;i ++)
    {
        scanf("%d%d%d",&u,&v,&w);
        road[u][v] = road[v][u] = w;
    }
    int t;///最短距离的结点
    int mi;///最短距离
    dis[0] = 0;
    while(1)
    {
        t = -1;
        mi = inf;
        for(int i = 0;i <= n;i ++)
        {
            if(!vis[i] && mi > dis[i])
            {
                t = i;
                mi = dis[i];
            }
        }
        if(t == -1)break;
        vis[t] = 1;
        for(int i = 0;i <= n;i ++)
        {
            if(vis[i] || road[t][i] == inf)continue;
            int d = dis[t] + road[t][i];
            if(d < dis[i])
            {
                pathfrom[i].clear();
                dis[i] = d;
                pathfrom[i].push_back(t);
            }
            else if(d == dis[i])
            {
                pathfrom[i].push_back(t);
            }
        }
    }
    temppath.push_back(p);
    dfs(p);
    printf("%d 0",minneed);
    for(int i = path.size() - 2;i >= 0;i --)
        printf("->%d",path[i]);
    printf(" %d",minnneed);
}

错误代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define inf 0x3f3f3f3f
int c;///每个车站最大容量
int n;///车站的总个数
int p;///要求车站的编号
int m;///道路的条数
int current[501];///各车站当前车辆数
int road[501][501];///两车站距离
int dis[501];///0到i路径的长度
int num[501];///0到i车辆的总数
int vis[501];///标记访问过该车站没有
int path[501];///路径
int spath[501];///最短路径
int pa;///spath下标
int u,v,w;
void getpath(int s)
{
    if(path[s])getpath(path[s]);
    spath[pa ++] = s;
}
int main()
{
    scanf("%d%d%d%d",&c,&n,&p,&m);
    c /= 2;
    for(int i = 1;i <= n;i ++)
    {
        scanf("%d",&current[i]);
        current[i] -= c;
    }
    for(int i = 0;i <= n;i ++)
    {
        for(int j = 0;j <= n;j ++)
        {
            road[i][j] = inf;
        }
        road[i][i] = 0;
    }
    for(int i = 0;i < m;i ++)
    {
        scanf("%d%d%d",&u,&v,&w);
        road[u][v] = road[v][u] = w;
    }
    int t;///最短距离的结点
    int mi;///最短距离
    for(int i = 1;i <= n;i ++)
    {
        dis[i] = road[0][i];
        if(dis[i] != inf)
        {
            num[i] = current[i];
            path[i] = 0;
        }
    }
    while(1)
    {
        mi = inf;
        for(int i = 1;i <= n;i ++)
        {
            if(!vis[i] && mi > dis[i])
            {
                mi = dis[t = i];
            }
        }
        if(mi == inf)break;
        vis[t] = 1;
        for(int i = 1;i <= n;i ++)
        {
            if(vis[i])continue;
            int d = dis[t] + road[t][i];
            if(d < dis[i])
            {
                dis[i] = d;
                num[i] = num[t] + current[i];
                path[i] = t;
            }
            else if(d == dis[i])
            {
                int change = num[t] + current[i];
                if(num[i] < 0 && change > num[i] || num[i] >= 0 && change >= 0 && num[i] > change)
                {
                    num[i] = change;
                    path[i] = t;
                }
            }
        }
    }
    getpath(p);
    printf("%d 0",num[p] < 0 ? -num[p] : 0);
    for(int i = 0;i < pa;i ++)
        printf("->%d",spath[i]);
    printf(" %d",num[p] <= 0 ? 0 : num[p]);
}

原文地址:https://www.cnblogs.com/8023spz/p/9127488.html

时间: 2024-10-10 07:51:00

1018 Public Bike Management (30)(30 分)的相关文章

1018 Public Bike Management (30 分)(图的遍历and最短路径)

这题不能直接在Dijkstra中写这个第一 标尺和第二标尺的要求 因为这是需要完整路径以后才能计算的  所以写完后可以在遍历 #include<bits/stdc++.h> using namespace std; int cmax,n,v,m; const int N=1e3; int weight[N]; int mp[N][N]; const int inf=0x3f3f3f3f; int dis[N]; int vis[N]; vector<int>path[N]; voi

PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs case 7 过不了求助!!!)

1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Pub

pat 1018 Public Bike Management

题意有三:1.时间最短 2.送出车辆最少 3.回收车辆最少 陷阱有一:调整路径上站点的车辆数目时,不能把后面站点多出来的车辆返补回前面车辆数不够的站点.乍看之下这是符合逻辑的,因为在前面的站点的时候不能知道后面的站点是什么情况,所以按理应该逐个调整合理,后面的站点影响不到前面的调整.但是细想之后发现这其实是很死板的做法,现实当中设计这样一个管理系统肯定能够实时收集每个站点的自行车数,所以在出发前应该就能得出这条路径上总的自行车数目,继而就能得到最优的送出数.但四十是介样子素通不过滴. #incl

1018 Public Bike Management (30分)

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Management Center (PBMC) kee

1018. Public Bike Management (30)

比较复杂的dfs 注意算好到底需要send多少take back多少 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at an

PTA (Advanced Level)1018 Public Bike Management

Public Bike Management There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Manag

PAT (Advanced Level) 1018. Public Bike Management (30)

先找出可能在最短路上的边,图变成了一个DAG,然后在新图上DFS求答案就可以了. #include<iostream> #include<cstring> #include<cmath> #include<algorithm> #include<cstdio> #include<queue> #include<vector> using namespace std; const int INF=0x7FFFFFFF; co

PAT (Advanced Level) 1018 Public Bike Management

题解 看完这题,直接来一套最短路.这次WA了,淦. 因为这道题路径的选择条件为:第一标尺是距离短优先,第二标尺是从管理中心带出去的自行车少的优先,第三标尺是从站点带回去的自行车少的优先. 只用最短路算法解决这道题的话,第二标尺和第三标尺不能被正确维护,因为最短路算法的特点,会出现改变其他站点的自行车数量,但是这个站点并不在你的最终路径上的情况. 所以正确解法是先利用最短路算法将距离最短的路径(可能不止一条)保存下来,再利用深搜对这些在距离上最优的路径进行第二标尺和第三标尺的筛选,求得最优解. 错

PAT.Public bike management(SPFA + DFS)

1018 Public Bike Management (30分) There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public