一、XGBoost的优势
XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势:
1 正则化
- 标准GBDT 的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。
- 实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。
2 并行处理
- XGBoost可以实现并行处理,相比GBDT有了速度的飞跃。
- 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?其实 XGBoost并行指代的是更低粒度的并行,是在特征层面的并行。
- XGBoost 也支持Hadoop实现。
3 高度的灵活性
- XGBoost 允许用户定义自定义优化目标和评价标准
- 它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。
4 缺失值处理
- XGBoost内置处理缺失值的规则。
- 用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。
5 剪枝
- 当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。
- XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。
- 这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。
6 内置交叉验证
- XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。
- 而GBM使用网格搜索,只能检测有限个值。
7 在已有的模型基础上继续
- XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。
- sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。
二、XGBoost的参数
XGBoost的作者把所有的参数分成了三类:
- 通用参数:宏观函数控制。
- Booster参数:控制每一步的booster(tree/regression)。
- 学习目标参数:控制训练目标的表现。
- 除了以上参数还可能有其它参数,在命令行中使用
1 通用参数
1)booster[默认gbtree]
- 选择每次迭代的模型,有两种选择:
gbtree:基于树的模型
gbliner:线性模型
2)silent[默认0]
- 当这个参数值为1时,静默模式开启,不会输出任何信息。
- 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
3)nthread[默认值为最大可能的线程数]
- 这个参数用来进行多线程控制,应当输入系统的核数。
- 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
还有两个参数,XGBoost会自动设置,目前你不用管它。
4)num_feature [set automatically by xgboost, no need to be set by user]
boosting过程中用到的特征维数,设置为特征个数。XGBoost会自动设置,不需要手工设置。
2 booster参数
尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。
1)eta[默认0.3]
- 和GBM中的 learning rate 参数类似。
- 通过减少每一步的权重,可以提高模型的鲁棒性。
- 典型值为0.01-0.2。
2)min_child_weight[默认1]
- 决定最小叶子节点样本权重和。
- 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。
- 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
- 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
3)max_depth[默认6]
- 和GBM中的参数相同,这个值为树的最大深度。
- 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
- 需要使用CV函数来进行调优。
- 典型值:3-10
4)max_leaf_nodes
- 树上最大的节点或叶子的数量。
- 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2n2个叶子。
- 如果定义了这个参数,GBM会忽略max_depth参数。
5)gamma[默认0]
- 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
- 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
- 模型在默认情况下,对于一个节点的划分只有在其loss function 得到结果大于0的情况下才进行,而gamma 给定了所需的最低loss function的值
- gamma值使得算法更conservation,且其值依赖于loss function ,在模型中应该进行调参
6)max_delta_step[默认0]
- 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
- 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
- 这个参数一般用不到,但是你可以挖掘出来它更多的用处。
7)subsample[默认1]
- 和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
- 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
- 典型值:0.5-1
8)colsample_bytree[默认1]
- 和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
- 典型值:0.5-1
9)colsample_bylevel[默认1]
- 用来控制树的每一级的每一次分裂,对列数的采样的占比。
- 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。
10)lambda[默认1]
- 权重的L2正则化项。(和Ridge regression类似)。
- 这个参数是用来控制XGBoost的正则化部分的。
11)alpha[默认1]
- 权重的L1正则化项。(和Lasso regression类似)。
- 可以应用在很高维度的情况下,使得算法的速度更快。
12)scale_pos_weight[默认1]
- 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
- 大于0的取值可以处理类别不平衡的情况。帮助模型更快收敛。
另外:Parameter for Linear Booster
- lambda [default=0]
- L2 正则的惩罚系数
- 用于处理XGBoost的正则化部分。通常不使用,但可以用来降低过拟合
- alpha [default=0]
- L1 正则的惩罚系数
- 当数据维度极高时可以使用,使得算法运行更快。
- lambda_bias
- 在偏置上的L2正则。
缺省值为0
(在L1上没有偏置项的正则,因为L1时偏置不重要)
- 在偏置上的L2正则。
3 学习目标参数
这个参数用来控制理想的优化目标和每一步结果的度量方法。
1)objective[默认reg:linear]
- 这个参数定义需要被最小化的损失函数。最常用的值有:
- “reg:linear” –线性回归。
- “reg:logistic” –逻辑回归。
- “binary:logistic” –二分类的逻辑回归问题,输出为概率。
- “binary:logitraw” –二分类的逻辑回归问题,输出的结果为wTx。
- “count:poisson” –计数问题的poisson回归,输出结果为poisson分布。
- 在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
- “multi:softmax” –让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)
- “multi:softprob” –和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。每行数据表示样本所属于每个类别的概率。
- “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss
定义学习任务及相应的学习目标,可选的目标函数如下:
2)eval_metric[默认值取决于objective参数的取值]
- 对于有效数据的度量方法。
- 对于回归问题,默认值是rmse,对于分类问题,默认值是error。
- 典型值有:
- rmse 均方根误差
- mae 平均绝对误差
- logloss 负对数似然函数值
- error 二分类错误率(阈值为0.5)
- merror 多分类错误率
- mlogloss 多分类logloss损失函数
- auc 曲线下面积
3)seed(默认0)
- 随机数的种子
- 设置它可以复现随机数据的结果,也可以用于调整参数
如果你比较习惯scikit-learn的参数形式,那么XGBoost的Python 版本也提供了sklearn形式的接口 XGBClassifier。
它使用sklearn形式的参数命名方式,对应关系如下:
1、eta -> learning_rate
2、lambda -> reg_lambda
3、alpha -> reg_alpha
另外:Console Parameters
The following parameters are only used in the console version of xgboost
* use_buffer [ default=1 ]
- 是否为输入创建二进制的缓存文件,缓存文件可以加速计算。缺省值为1
* num_round
- boosting迭代计算次数。
* data
- 输入数据的路径
* test:data
- 测试数据的路径
* save_period [default=0]
- 表示保存第i*save_period次迭代的模型。例如save_period=10表示每隔10迭代计算XGBoost将会保存中间结果,设置为0表示每次计算的模型都要保持。
* task [default=train] options: train, pred, eval, dump
- train:训练模型
- pred:对测试数据进行预测
- eval:通过eval[name]=filenam定义评价指标
- dump:将学习模型保存成文本格式
* model_in [default=NULL]
- 指向模型的路径在test, eval, dump都会用到,如果在training中定义XGBoost将会接着输入模型继续训练
* model_out [default=NULL]
- 训练完成后模型的保存路径,如果没有定义则会输出类似0003.model这样的结果,0003是第三次训练的模型结果。
* model_dir [default=models]
- 输出模型所保存的路径。
* fmap
- feature map, used for dump model
* name_dump [default=dump.txt]
- name of model dump file
* name_pred [default=pred.txt]
- 预测结果文件
* pred_margin [default=0]
- 输出预测的边界,而不是转换后的概率
你肯定在疑惑为啥咱们没有介绍和GBM中的n_estimators
类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为num_boosting_rounds
参数传入。
XGBoost Guide 的一些部分是我强烈推荐大家阅读的,通过它可以对代码和参数有一个更好的了解:
XGBoost Parameters (official guide)
XGBoost Demo Codes (xgboost GitHub repository)
Python API Reference (official guide)
三、调参示例
我们从Data Hackathon 3.x AV版的hackathon中获得数据集,和GBM 介绍文章中是一样的。更多的细节可以参考competition page
数据集可以从这里下载。我已经对这些数据进行了一些处理:
City
变量,因为类别太多,所以删掉了一些类别。DOB
变量换算成年龄,并删除了一些数据。- 增加了
EMI_Loan_Submitted_Missing
变量。如果EMI_Loan_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的EMI_Loan_Submitted
变量。 EmployerName
变量,因为类别太多,所以删掉了一些类别。- 因为
Existing_EMI
变量只有111个值缺失,所以缺失值补充为中位数0。 - 增加了
Interest_Rate_Missing
变量。如果Interest_Rate
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Interest_Rate
变量。 - 删除了
Lead_Creation_Date
,从直觉上这个特征就对最终结果没什么帮助。 Loan_Amount_Applied, Loan_Tenure_Applied
两个变量的缺项用中位数补足。- 增加了
Loan_Amount_Submitted_Missing
变量。如果Loan_Amount_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Loan_Amount_Submitted
变量。 - 增加了
Loan_Tenure_Submitted_Missing
变量。如果Loan_Tenure_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Loan_Tenure_Submitted
变量。 - 删除了
LoggedIn
,Salary_Account
两个变量 - 增加了
Processing_Fee_Missing
变量。如果Processing_Fee
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Processing_Fee
变量。 Source
前两位不变,其它分成不同的类别。- 进行了离散化和独热编码(一位有效编码)。
如果你有原始数据,可以从资源库里面下载data_preparation
的Ipython notebook
文件,然后自己过一遍这些步骤。
首先,import必要的库,然后加载数据。
注意我import了两种XGBoost:
- xgb - 直接引用xgboost。接下来会用到其中的“cv”函数。
- XGBClassifier - 是xgboost的sklearn包。这个包允许我们像GBM一样使用Grid Search 和并行处理。
在向下进行之前,我们先定义一个函数,它可以帮助我们建立XGBoost models 并进行交叉验证。好消息是你可以直接用下面的函数,以后再自己的models中也可以使用它。
这个函数和GBM中使用的有些许不同。注意xgboost的sklearn包没有“feature_importance”这个量度,但是get_fscore()函数有相同的功能。
四、参数调优的一般方法
我们会使用和GBM中相似的方法。需要进行如下步骤:
- 选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。
- 对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数,待会儿我会举例说明。
- xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。
- 降低学习速率,确定理想参数。
咱们一起详细地一步步进行这些操作。
第一步:确定学习速率和tree_based 参数调优的估计器数目
为了确定boosting
参数,我们要先给其它参数一个初始值。咱们先按如下方法取值:
1、max_depth
= 5 :这个参数的取值最好在3-10之间。我选的起始值为5,但是你也可以选择其它的值。起始值在4-6之间都是不错的选择。
2、min_child_weight
= 1:在这里选了一个比较小的值,因为这是一个极不平衡的分类问题。因此,某些叶子节点下的值会比较小。
3、gamma
= 0: 起始值也可以选其它比较小的值,在0.1到0.2之间就可以。这个参数后继也是要调整的。
4、subsample, colsample_bytree
= 0.8: 这个是最常见的初始值了。典型值的范围在0.5-0.9之间。
5、scale_pos_weight
= 1: 这个值是因为类别十分不平衡。
注意哦,上面这些参数的值只是一个初始的估计值,后继需要调优。这里把学习速率就设成默认的0.1。然后用xgboost中的cv函数来确定最佳的决策树数量。前文中的函数可以完成这个工作。
简单调参方法: 首先调整max_depth ,通常max_depth 这个参数与其他参数关系不大,初始值设置为10,找到一个最好的误差值,然后就可以调整参数与这个误差值进行对比。比如调整到8,如果此时最好的误差变高了,那么下次就调整到12;如果调整到12,误差值比10 的低,那么下次可以尝试调整到15. 在找到了最优的max_depth之后,可以开始调整subsample,初始值设置为1,然后调整到0.8 如果误差值变高,下次就调整到0.9,如果还是变高,就保持为1.0 接着开始调整min_child_weight , 方法与上面同理 再接着调整colsample_bytree 经过上面的调整,已经得到了一组参数,这时调整eta 到0.05,然后让程序运行来得到一个最佳的num_round,(在 误差值开始上升趋势的时候为最佳 )
参考:https://blog.csdn.net/wzmsltw/article/details/50994481
https://blog.csdn.net/han_xiaoyang/article/details/52665396
原文地址:https://www.cnblogs.com/Allen-rg/p/9266605.html