MATLAB卷积运算(conv、conv2、convn)解释

1

conv(向量卷积运算)

所谓两个向量卷积,说白了就是多项式乘法。
比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:
把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。

卷积就是“两个多项式相乘取系数”。
(1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3
所以p和q卷积的结果就是[1 3 5 3]。

记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。
你也可以用matlab试试
p=[1 2 3]
q=[1 1]
conv(p,q)
看看和计算的结果是否相同。

conv2(二维矩阵卷积运算)

a=[1 1 1;1 1 1;1 1 1];
b=[1 1 1;1 1 1;1 1 1];
>> conv2(a,b)

ans =

1     2     3     2     1
     2     4     6     4     2
     3     6     9     6     3
     2     4     6     4     2
     1     2     3     2     1

>> conv2(a,b,‘valid‘)

ans =

9

>> conv2(a,b,‘same‘)

ans =

4     6     4
     6     9     6
     4     6     4

>> conv2(a,b,‘full‘)

ans =

1     2     3     2     1
     2     4     6     4     2
     3     6     9     6     3
     2     4     6     4     2
     1     2     3     2     1

convn(n维矩阵卷积运算)


>> a=ones(5,5,5)

a(:,:,1) =

1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

a(:,:,2) =

1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

a(:,:,3) =

1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

a(:,:,4) =

1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

a(:,:,5) =

1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1
     1     1     1     1     1

>> b=ones(5,5,5);

>> convn(a,b,‘valid‘)

ans =

125

>> convn(a,b,‘same‘)

ans(:,:,1) =

27    36    45    36    27
    36    48    60    48    36
    45    60    75    60    45
    36    48    60    48    36
    27    36    45    36    27

ans(:,:,2) =

36    48    60    48    36
    48    64    80    64    48
    60    80   100    80    60
    48    64    80    64    48
    36    48    60    48    36

ans(:,:,3) =

45    60    75    60    45
    60    80   100    80    60
    75   100   125   100    75
    60    80   100    80    60
    45    60    75    60    45

2

1.full

如下图:

图(1)

图中蓝色为原图像,白色为对应卷积所增加的padding,通常全部为0,绿色是卷积后图片。图的卷积的滑动是从卷积核右下角与图片左上角重叠开始进行卷积,滑动步长为1,卷积核的中心元素对应卷积后图像的像素点。

2.same

如下图:

图(2)

卷积的时候需要对卷积核进行180的旋转,同时卷积核中心与需计算的图像像素对齐,输出结构为中心对齐像素的一个新的像素值

3. valid

如下图:

图(3)

太简单,不解释。

最后,我们可以总结出full,same,valid三种卷积后图像大小的计算公式:

1.full: 滑动步长为1,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图像大小:N1+N2-1 x N1+N2-1

如图1, 滑动步长为1,图片大小为2x2,卷积核大小为3x3,卷积后图像大小:4x4

2.same: 滑动步长为1,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图像大小:N1xN1

3.valid:滑动步长为S,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图像大小:(N1-N2)/S+1 x (N1-N2)/S+1

如图2,滑动步长为1,图片大小为5x5,卷积核大小为3x3,卷积后图像大小:3x3

3

MATLAB的conv2函数实现步骤(conv2(A,B)):

其中,矩阵A和B的尺寸分别为ma*na即mb*nb

① 对矩阵A补零,第一行之前和最后一行之后都补mb-1行,第一列之前和最后一列之后都补nb-1列(注意conv2不支持其他的边界补充选项,函数内部对输入总是补零);

② 将卷积核绕其中心旋转180度;

③ 滑动旋转后的卷积核,将卷积核的中心位于图像矩阵的每一个元素,并求乘积和(即将旋转后的卷积核在A上进行滑动,然后对应位置相乘,最后相加);下面分别是shape=full, same, valid时取输出图像大小的情况,其中:位置1表示输出图像的值从当前核的计算值开始(对应输出图像左上角),位置2表示到该位置结束(对应输出图像右下角)

原文地址:https://www.cnblogs.com/hyb221512/p/9276621.html

时间: 2024-10-03 23:06:14

MATLAB卷积运算(conv、conv2、convn)解释的相关文章

MATLAB多项式运算

序言 none 正文  1. 多项式的表示 在Matlab中,多项式用一个行向量表示, 行向量的元素值为多项式系数按幂次的降序排列, 如p(x)=x3-2x-5用P=[1,0,-2,-5]表示. 2. 多项式相关的函数和运算 (1) 多项式加减: 两个多项式之间的加减是对应幂次的系数进行加减, 可以直接用系数向量的加减法来得出. (2) 多项式乘法: 两个多项式的乘法用卷积函数conv来实现, 如计算多项式p1(x)=x3-2x-5和p2(x)=2x2+3x+1的积可利用如下代码: p1=[1,

基于INTEL FPGA硬浮点DSP实现卷积运算

概述 卷积是一种线性运算,其本质是滑动平均思想,广泛应用于图像滤波.而随着人工智能及深度学习的发展,卷积也在神经网络中发挥重要的作用,如卷积神经网络.本参考设计主要介绍如何基于INTEL 硬浮点的DSP Block实现32位单精度浮点的卷积运算,而针对定点及低精度的浮点运算,则需要对硬浮点DSP Block进行相应的替换即可. 原理分析 设:f(x), g(x)是两个可积函数,作积分: 随着x的不同取值,该积分定义了一个新的函数h(x),称为函数f(x)与g(x)的卷积,记为h(x)=f(x)*

im2col:将卷积运算转为矩阵相乘

im2col:将卷积运算转为矩阵相乘 发表于 2019-04-26  更新于 2019-05-15  分类于 深度学习  阅读次数: 28 本文字数: 2.9k 博客:blog.shinelee.me | 博客园 | CSDN im2col实现 如何将卷积运算转为矩阵相乘?直接看下面这张图,以下图片来自论文High Performance Convolutional Neural Networks for Document Processing: im2col上图为3D卷积的传统计算方式与矩阵乘

Caffe 中卷积运算的原理与实现

caffe中卷积运算设计的很巧妙,今天就来讨论一下caffe中卷积运算的原理,最后会给出一个自己的实现版本,便于初学者理解. Caffe中卷积运算的原理 俗话说,一图胜千言,首先先给出原理示意图,为了方便,这里以二维核为例 滑动窗口在图像中每滑动一个地方,将图像中该滑动窗口图像展开为一列,所有列组成图中的滑动窗口矩阵,这里假设pad=1,stride=1,K=3,则滑动窗口矩阵每行大小为W*H,一共K*K行. 每个核展开为一行,N个核形成的核矩阵大小为N*K*K. 最后将核矩阵和滑动窗口矩阵相乘

二维卷积运算工作原理剖析(转载)

卷积运算(Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表示函数f 与经过翻转和平移与g 的重叠部分的累积.如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是"滑动平均"的推广.假设: f(x),g(x)是R1上的两个可积函数,并且积分是存在的.这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x). 两个向量卷积,说白了就是多项式乘法.下面用个矩阵例子说明其工作原理: a和d

二维矩阵卷积运算实现

http://z.download.csdn.net/detail/wangfei0117/4408649 http://download.csdn.net/detail/wanwenliang2008/1767686 二维矩阵卷积运算实现,布布扣,bubuko.com

iOS中的图像处理(二)——卷积运算

关于图像处理中的卷积运算,这里有两份简明扼要的介绍:文一,文二. 其中,可能的一种卷积运算代码如下: [cpp] view plaincopy - (UIImage*)applyConvolution:(NSArray*)kernel { CGImageRef inImage = self.CGImage; CFDataRef m_DataRef = CGDataProviderCopyData(CGImageGetDataProvider(inImage)); CFDataRef m_OutD

图像处理之基础---二维卷积运算原理剖析

卷积运算(Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表示函数f 与经过翻转和平移与g 的重叠部分的累积.如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广.假设: f(x),g(x)是R1上的两个可积函数,并且积分是存在的.这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x). 两个向量卷积,说白了就是多项式乘法.下面用个矩阵例子说明其工作原理: a和d的卷积就是

图像处理---基础(模板、卷积运算)

转自:图像处理:基础(模板.卷积运算) 1.使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算.      卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相                乘,所有乘积之和作为区域中心像素的新值.      卷积核:卷积时使用到的权用一个矩阵表示,该矩阵与使用的图像区域大小相同,其行.列都是奇数,              是一个权矩阵.      卷积示例:              3 *