深度优先和广度优先算法

1、深度优先算法

遍历规则:不断地沿着顶点的深度方向遍历。顶点的深度方向是指它的邻接点方向。

最后得出的结果为:ABDECFHG。

Python代码实现的伪代码如下:

2、广度优先算法:

遍历规则:

1)先访问完当前顶点的所有邻接点。(应该看得出广度的意思)

2)先访问顶点的邻接点先于后访问顶点的邻接点被访问。

最后得出的结果为:ABCDEFGH。

Python代码实现的伪代码如下:

3.总结

深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历(我们前面使用的是先序遍历)。具体说明如下:

先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。

中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。

后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。

广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止

4、分析

深度优先搜素算法:不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。

广度优先搜索算法:保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。

通常深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,一般在数据库中存储的结点数就是深度值,因此它占用空间较少。

所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。

广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。

但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些

参考简书:https://www.jianshu.com/p/333d0df84b3e

原文地址:https://www.cnblogs.com/chenyanlong/p/9090992.html

时间: 2024-10-10 16:26:57

深度优先和广度优先算法的相关文章

深度优先与广度优先算法

图的遍历有深度优先和广度优先算法. 深度优先遍历可描述为一个递归算法.当到达顶点v时,具体操作是: ①访问(v); ②for(与v相邻的每个顶点w) 遍历(w): //深度优先算法 template<int max_size> void Diagraph<max_size>::depth_first(void(*visit)(Vertex &)) const { bool visited[max_size]; //引入数组防止无限循环 Vertex v; for (all

图的遍历方法(深度优先和广度优先算法)

图的遍历方法有两种: 1 深度优先 该算法类似于树的先根遍历: 2   广度优先 该算法类似树的层次遍历: 事例: 深度优先遍历顺序为:V1–V2–V4–V8–V5–V3–V6–V7 广度优先遍历顺序为:V1–V2–V3–V4–V5–V6–V7–V8 3   注意事项 1)一个图,它的深度优先和广度优先是不唯一的,可以有多个! 2)一般情况都是给邻接表或者邻接矩阵求深度优先和广度优先,此时,深度优先和广度优先都是唯一的了,因为当你的存储结构固定的时候,深度优先和广度优先也随之被固定了!

深度优先算法和广度优先算法

算法:深度优先算法和广度优先算法(基于邻接矩阵) 1.写在前面 图的存储结构有两种:一种是基于二维数组的邻接矩阵表示法. 另一种是基于链表的的邻接表. 在邻接矩阵中,可以如下表示顶点和边连接关系: 说明: 将顶点对应为下标,根据横纵坐标将矩阵中的某一位置值设为1,表示两个顶点向联接. 图示表示的是无向图的邻接矩阵,从中我们可以发现它们的分布关于斜对角线对称. 我们在下面将要讨论的是下图的两种遍历方法(基于矩阵的): 我们已经说明了我们要用到的是邻接矩阵表示法,那么我首先要来构造图: 矩阵图的数据

树图 广度优先算法和深度优先算法

原文链接: ????????深度优先算法:http://blog.163.com/zhoumhan_0351/blog/static/3995422720098342257387/ ????????广度优先算法:http://blog.163.com/zhoumhan_0351/blog/static/3995422720098711040303/ 树图 广度优先算法和深度优先算法

深度优先算法+广度优先算法

一 深度优先算法 bool visited[MaxVnum]; void DFS(Graph G,int v) { visited[v]= true; //从V开始访问,flag它 printf("%d",v); //打印出V for(int j=0;j<G.vexnum;j++) if(G.arcs[v][j]==1&&visited[j]== false) //这里可以获得V未访问过的邻接点 DFS(G,j); //递归调用,如果所有节点都被访问过,就回溯,而

树的深度优先与广度优先遍历

简述树的深度优先及广度优先遍历算法,并说明非递归实现. 原题出自百度的笔试: 当时我看到这个题目的时候,已经完全记不得非递归算法该怎么实现了,后来查阅了一下,要用到两个辅助的数据结构: 深度优先遍历--->栈: 广度优先遍历--->队列: 这里以二叉树为例来实现. import java.util.ArrayDeque; public class BinaryTree { static class TreeNode{ int value; TreeNode left; TreeNode rig

爬了个爬(二)性能相关 及 深度优先与广度优先

性能相关 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢. import requests def fetch_async(url): response = requests.get(url) return response url_list = ['http://www.github.com', 'http://www.bing.com'] for url in url_list: fetch_async(url) 1.同步执行

存储结构与邻接矩阵,深度优先和广度优先遍历及Java实现

如果看完本篇博客任有不明白的地方,可以去看一下<大话数据结构>的7.4以及7.5,讲得比较易懂,不过是用C实现 下面内容来自segmentfault 存储结构 要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值.常用的图的存储结构主要有以下二种: 邻接矩阵 邻接表 邻接矩阵 我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法. 我们假设A是这个二维数组

Python爬虫从入门到放弃(十)之 关于深度优先和广度优先

网站的树结构 深度优先算法和实现 广度优先算法和实现 网站的树结构 通过伯乐在线网站为例子: 并且我们通过访问伯乐在线也是可以发现,我们从任何一个子页面其实都是可以返回到首页,所以当我们爬取页面的数据的时候就会涉及到去重的问题,我们需要将爬过的url记录下来,我们将上图进行更改 在爬虫系统中,待抓取URL队列是很重要的一部分,待抓取URL队列中的URL以什么样的顺序排队列也是一个很重要的问题,因为这涉及到先抓取哪个页面,后抓取哪个页面.而决定这些URL排列顺序的方法,叫做抓取策略.下面是常用的两