hdu1027(逆康托展开)

src:http://acm.hdu.edu.cn/showproblem.php?pid=1027

一开始已经提过了,康托展开是一个全排列到一个自然数的双射,因此是可逆的。即对于上述例子,在(1,2,3,4,5)给出61可以算出起排列组合为 34152。由上述的计算过程可以容易的逆推回来,具体过程如下:

  • 用 61 / 4! = 2余13,说明a[5]=2,说明比首位小的数有2个,所以首位为3。
  • 用 13 / 3! = 2余1,说明a[4]=2,说明在第二位之后小于第二位的数有2个,所以第二位为4。
  • 用 1 / 2! = 0余1,说明a[3]=0,说明在第三位之后没有小于第三位的数,所以第三位为1。
  • 用 1 / 1! = 1余0,说明a[2]=1,说明在第二位之后小于第四位的数有1个,所以第四位为5。
  • 最后一位自然就是剩下的数2啦。
  • 通过以上分析,所求排列组合为 34152。

!!!用61/4!不用担心受到3!这一项的影响,因为这一样的值不可能>=4!,因为3!这一项的系数表示第四位前面小于第四位的,易知这个值<=3 !!!

注意:cantors算法给出的序列全排列顺序的下标是从0开始的,所以从题目输入序号后要减一!!!

ac代码:

#include<bits/stdc++.h>
using namespace std;
#define per(i,a,b) for(int i=a;i <= b;i++)
#define max(a,b) a=max(a,b)
#define min(a,b) a=min(a,b)
#define sz(x) (int)x.size()
typedef long long ll;
ll gcd(ll a,ll b){while(b){ll t=b;b=a%b;a=t;}return a;}
const int inf=0x3f3f3f3f;
const int mod=1000000007;
#define siz 40005
static const int FAC[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};   // 阶乘
int n,m;
vector<int>v;
void decantor()
{
    vector<int>chs;//存放可选数
    for(int i=1;i<=n;i++)chs.push_back(i);
    int cnt=n;
    while(cnt>0){
        if(cnt<=8){
            int r=m/FAC[cnt-1];
            m%=FAC[cnt-1];
            v.push_back(chs[r]);
            chs.erase(chs.begin()+r);
        }
        else {
            v.push_back(chs.front());
            chs.erase(chs.begin());
        }
        cnt--;
    }
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("b\\Data_In.txt","r",stdin);
#endif
    while(scanf("%d%d",&n,&m)!=EOF){
        m--;
        v.clear();
        decantor();
        for(int i=0;i<v.size();i++)printf("%d%c",v[i]," \n"[i!=(v.size()-1)?0:1]);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/WindFreedom/p/9486452.html

时间: 2024-10-01 04:30:01

hdu1027(逆康托展开)的相关文章

康托展开和逆康托展开

问题:给定的全排列,计算出它是第几个排列? 对于全排列,不清楚的可以参考全排列 方法:康托展开 对于一个长度为 n 的排列 num[1..n], 其序列号 X 为 X = a[1]*(n-1)! + a[2]*(n-2)! +...+ a[i]*(n-i)! +...+ a[n-1]*1! + a[n]*0! 其中a[i]表示在num[i+1..n]中比num[i]小的数的数量 写做伪代码为: Cantor(num[]) X = 0 For i = 1 .. n tp = 0 For j = i

nyist 139 我排第几个&amp;&amp;143 第几是谁(康托展开和逆康托展开)

 我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的? 输入 第一行有一个整数n(0<n<=10000); 随后有n行,每行是一个排列: 输出 输出一个整数m,占一行,m表示排列是第几位: 样例输入 3 abcdefghijkl hgebkflacdji gfkedhjblcia 样例输出 1 3027

康托展开 / 逆康托展开

先搬一下(戳)维基百科的康托展开(戳): 康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩. 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的. 由于是双射    所以可以求n的全排列里第k大的排列(逆康托展开) (伪)计算原理: 从某个元素找后面比这个元素小的数的个数,再乘以这个位置每一个数字能有的组合方法数(排列 / 阶乘),得出只考虑从这一位开始到末尾比当前小的排列数,然后加起来就是康托展开求的数(追求难懂的巅峰...........看不懂就看看维

LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!*...*Nn!), 然后就靠自己YY出解法,搞了好几天,最后向学长要了数据,然后迷迷糊糊调了,终于AC了. 后来才知道当时想的解法类似于逆康托展开,只是逆康托展开是对于没有重复元素全排列而言,不过有没有重复元素都一个样. 而现在做这题很顺,因为思路很清晰了,另外这做法和数论DP的统计部分有相似之处.

nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> using namespace std; int fac[20]; int fun(){ fac[0]=1; int i; for(i=1;i<=12;i++){ fac[i]=fac[i-1]*i; } } int main(){ int t,i,j,c,sum,num; char str[15];

数据结构——康托展开与逆康托展开

含义 康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩. 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的. 原理 X = s1(n-1)! + s2(n-2)! + s3(n-3)! + …… + sn-1 * 1! + sn * 0! 其中si表示在第i位右边比ai小的数的个数. 我们现在用sl表示第i位左边比ai小的数的个数,sr表示第i位右边比ai小的数的个数,显然可以得到如下等式: ai = sl + sr + 1 故公式中的si可以用上述等式

NYOJ143 第几是谁? 【逆康托展开】

第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 现在有"abcdefghijkl"12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. 输入 第一行有一个整数n(0<n<=10000); 随后有n行,每行是一个整数m,它代表着序列的第几小: 输出 输出一个序列,占一行,代表着第m小的序列. 样例输入 3 1 302715242 2607

康托和逆康托展开(转)

1.康托展开的解释 康托展开就是一种特殊的哈希函数 把一个整数X展开成如下形式: X=a[n]*n!+a[n-1]*(n-1)!+...+a[2]*2!+a[1]*1! 其中,a为整数,并且0<=a<i,i=1,2,..,n {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个.123 132 213 231 312 321 . 代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来. 他们间的对应关系可由康托展开来找到.

hdoj 1027 Ignatius and the Princess II 【逆康托展开】

Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4865    Accepted Submission(s): 2929 Problem Description Now our hero finds the door to the BEelzebub feng5166. He o