dijkstra算法学习

dijkstra算法学习

一、最短路径

单源最短路径:计算源点到其他各顶点的最短路径的长度

全局最短路径:图中任意两点的最短路径

Dijkstra、Bellman-Ford、SPFA求单源最短路径

Floyed可以求全局最短路径,但是效率比较低

SPFA算法是Bellman-Ford算法的队列优化

Dijkstra算法不能求带负权边的最短路径,而SPFA算法、Bellman-Ford算法、Floyd-Warshall可以求带负权边的最短路径。

Bellman-Ford算法的核心代码只有4行,Floyd-Warshall算法的核心代码只有5行。

深度优先遍历可以求一个点到另一个点的最短路径的长度

二、dijkstra算法图解

三、算法步骤

1.初始化,选择好初始点,设总共有vexnum个节点,则总共要将vexnum-1个节点放入s中

for(i = 1;i<G.vexnum;i++)

2.遍历U,找出其中最短路径的点,并作记录(放入S中)

    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

3.更新剩余U中节点的距离:设步骤2中加入的节点为k,最短距离为min,则if(k的邻居到k的距离+min)<dist(D,k的邻居),则更新dist(D,k的邻居)

        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

四、完整代码

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;              // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

    // 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;

    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

    // 打印dijkstra最短路径的结果
    printf("dijkstra(%c): \n", G.vexs[vs]);
    for (i = 0; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

参考资料:http://www.cnblogs.com/skywang12345/p/3711512.html

原文地址:https://www.cnblogs.com/nathan2young/p/9196590.html

时间: 2024-11-03 00:11:11

dijkstra算法学习的相关文章

单源最短路径——Dijkstra算法学习

每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好理解,堪称完美. 内容摘抄如下: 网络中的最短路径是一条简单路径,即是一条不与自身相交的路径,最短路径搜索的依据:若从S点到T点有一条最短路径,则该路径上的任何点到S的距离都是最短的. Dijkstra算法搜索步骤: 1.对起始点作标记S,且对所有顶点令D(X)=∞,Y=S: 2.对所有未做标记的点按以下公式

Dijkstra算法——《算法导论》学习心得(十三)

这两天在做一个项目,关于北京市出租车的,然后用到了Dijkstra算法,所以这篇文章就先写Dijkstra算法了.在大二下的时候学了数据结构,书里面也讲了Dijkstra算法,但是当时怎么也没理解,结果考试的时候就考了,哎蛋疼!现在用到了,又得硬着头皮去学,结果很快弄明白了,只是在写代码时出了一些很低级的错误,调Bug用了不少时间.最后总结只能说:不是你不会,而是没到你非会不可的地步!在这篇文章里我就用实际的项目给大家讲Dijkstra算法. 背景: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉

算法学习 - Dijkstra(迪杰斯特拉)算法学习

Dijkstra算法 其实Dijkstra是单源点最短路径的基础算法,这个算法的目的就是找到一个图中的某个点V到这个图中其他点的最短路径. 条件 有向图 没有负权值路径 时间复杂度:O(E) + O(V^2) = O(V^2) 当图是稠密的时候和稀疏的时候时间复杂度还是有点差别的. 代码实现 其实这个还挺简单的,单源点最短路径还有一个Bellman-Ford算法,以后在写,比较简单. Dijkstra算法: // // main.cpp // Dijkstra // // Created by

658 - It&#39;s not a Bug, it&#39;s a Feature! (Dijkstra算法)

今天第一次系统的学习了一下最短路算法,开始刷第十一章,第一次写Dijkstra算法,出现了很多喜闻乐见的错误..而且uva上样例很水,瓢虫也很水 ,坑了我好久. 首先是对于结点的处理,我们必须要维护一个二元组,一个表示结点一个表示当前结点最短路.   因为Dijkstra算法利用了优先队列来加速算法,所以需要定义小于运算符,一开始我直接将状态装进了优先队列,显然是不对的,因为优先队列的作用就是取出当前距离最短的结点. 其次,说说最短路算法蕴含的巧妙思想: 每次从当前所有还未标记的结点中选择一个距

最短路径算法学习总结

Dijkstra最短路径算法: dijkstra 算法的优点在于可以求出从一点到所有其他点的最短距离: input: 5 71 2 101 3 201 5 302 5 102 3 54 5 204 3 30 output: 0 10 15 40 20//这是求的在这颗树中,1到所有点的最短距离 1 #include<iostream> 2 #include<cstring> 3 using namespace std; 4 const int N=1100; 5 const int

最小生成树算法之 Dijkstra算法

Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是用来求任意两个顶点之间的最短路径.在该算法中,我们用邻接矩阵来存储图.在该程序中设置一个二维数组来存储任意两个顶点之间的边的权值.可以将任意一个图的信息通过键盘输入,让后在输入要查找的两个顶点,程序可以自动求出这两个顶点之间的最短路

算法学习知识点

 ACMer必备知识(这么多呀,慢慢学了-- 图论 路径问题 0/1边权最短路径 BFS 非负边权最短路径(Dijkstra)   (可以用 Dijkstra解决问题的特征) 负边权最短路径   Bellman-Ford Bellman-Ford的 Yen-氏优化 差分约束系统 Floyd 广义路径问题   传递闭包 极小极大距离 /极大极小距离 Euler Path / Tour 圈套圈算法 混合图的 EulerPath / Tour  Hamilton Path / Tour 特殊图的

HDU 1874 畅通工程续(初涉dijkstra算法实现)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 dijkstra算法实现可参照此博客学习:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 44302 Acc

算法学习笔记 最短路

图论中一个经典问题就是求最短路,最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划,这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是很好理解的,理解透自己多默写几次即可记住,机试时主要的工作往往就是快速构造邻接矩阵了. 对于平时的练习,一个很厉害的 ACMer  @BenLin_BLY 说:"刷水题可以加快我们编程的速度,做经典则可以让我们触类旁通,初期如果遇见很多编不出,不妨就写伪代码,理思路,在纸上进行整体分析和一步步的演算