图:centrality

【定义】Centrality:图中每个节点v的相对重要度c(v),重要度是什么可根据具体应用定义。

【估计方法】

Degree centrality

Betweenness centrality

Closeness centrality

Eigenvector centrality

PageRank及其他

通常,Centrality的估计有几种方法:

1.  Degree centrality

计算公式:C(v)=degree(v)

备注:节点v处的边数直接作为centrality,若边是有向的,则可以有两个c(v)的定义:入度数和出度数

此定义也可视为到v距离为1的所有路径长度。

2. Betweenness centrality(Freeman Linton, 1977)

计算公式:C(v)=图中所有除节点v外的节点对之间经过v的最短路径数/图中所有除节点v外的节点对之间所有的最短路径数;

备注:衡量v作为路由器的功率。

计算复杂度:

1)Floyd-Warshall algorithm(也称Floyd’s algorithm, Roy-Warshall algorithm, Roy-Floyd algorithm, WFI algorithm,基于动态规划的计算任意两点间最短路径的算法,也可用于计算有向图的传递闭包),平均复杂度为theta(|V|^3),|V|为图中节点总数。

2)Johnson’s algorithm,也是计算最短路径的算法,在稀疏图中(有向、有边权),最坏情况下,O(|V|^2*Log|V|+|V|*|E|)

3)Brandes‘ algorithm (a faster algorithm for betweenness centrality, 2001), 在无权重(同权重)的图上,最坏情况下O(|V|*|E|)

3. Closeness centrality(Freeman, 1978; Opsahl et al., 2010; Wasserman and Faust, 1994)

计算公式:从v到所有其他节点的最短距离和的倒数。

备注1:这个centrality只能用于连通图,非联通图上会出现无穷大,然后所有节点的centrality都是0;

备注2:这个centrality可用于衡量一个节点将信息传播到其他节点的时间或者花费,能用来寻找图中的community leader。

修正1:Dangalchev(2006)对上述定义做了修正,将v到其他节点t的最短距离d(v,t)修正为2^(-d(v,t)),然后对除v之外的所有节点t的该值求和,作为centrality,使之能够用到非联通图上。

修正2:Opsahl(2010)和Boldi and Vigna(2013)做了另外一个修正,使得其能用到非联通图上,原来的定义中先对最短距离求和,然后求倒数,该修正中反过来,先对到每个节点的距离求倒数,在对倒数求和,作为cnetrality。

4. Eigenvector centrality

5. PageRank及其他

时间: 2024-10-30 03:49:38

图:centrality的相关文章

利用filter实时切换big5和gb2312,以及gb2312的简繁体

IEEE Spectrum 杂志发布了一年一度的编程语言排行榜,这也是他们发布的第四届编程语言 Top 榜. 据介绍,IEEE Spectrum 的排序是来自 10 个重要线上数据源的综合,例如 Stack Overflow.Twitter.Reddit.IEEE Xplore.GitHub.CareerBuilder 等,对 48 种语言进行排行. 与其他排行榜不同的是,IEEE Spectrum 可以让读者自己选择参数组合时的权重,得到不同的排序结果.考虑到典型的 Spectrum 读者需求

俑烟汲的诿樟透磺勒秤窗mvus

IEEE Spectrum 杂志发布了一年一度的编程语言排行榜,这也是他们发布的第四届编程语言 Top 榜. 据介绍,IEEE Spectrum 的排序是来自 10 个重要线上数据源的综合,例如 Stack Overflow.Twitter.Reddit.IEEE Xplore.GitHub.CareerBuilder 等,对 48 种语言进行排行. 与其他排行榜不同的是,IEEE Spectrum 可以让读者自己选择参数组合时的权重,得到不同的排序结果.考虑到典型的 Spectrum 读者需求

Social Network Analysis的Centrality总结,以及networkx实现EigenCentrality,PageRank和KatzCentrality的对比

本文主要总结近期学习的Social Network Analysis(SNA)中的各种Centrality度量,我暂且翻译为中心度.本文主要是实战,理论方面几乎没有,因为对于庞大的SNA,我可能连门都没有入,但是我觉得这不影响我理解原理后使用他们. 本文为原创,如有不小心侵权的问题出现,请联系本人删除.本文不允许任何形式的转载!!! 一.Centrality的定义 在SNA领域的centrality是用于衡量图中节点的重要度,不同的centrlity算法会对同一节点给出差异很大的centrali

关于图算法 & 图分析的基础知识概览

网址:https://learning.oreilly.com/library/view/graph-algorithms-/9781492060116/ 你肯定没有读过这本书,因为这本书的发布日期是2019年5月.本文会覆盖该书的大部分内容,读完这篇,你能够了解图算法的基本概念.关于此书,作为市面上为数不多的面向数据科学应用的图算法书籍,写的比较全面系统和易懂.当然,书在细节上的提高空间还有很多.今天内容很多,坐稳~ 目录 图算法 & 图分析 图基础知识 连通图与非连通图 未加权图与加权图 有

时序图与状态图(Rose) - Windows XP经典软件系列

最近开始了自己高级数据结构之旅,在这次旅行中,我将持续把一些高级的数据结构从理论到编码都过一遍,同时通过博客形式分享出来,希望大家指出不足之处! 二叉排序树是一种动态排序的数据结构,支持插入.删除.查找等操作,且平均时间复杂度为O(log(N)),但是普通二叉排序树不能保证树退化为一颗分支的情况,此时最坏情况下的时间复杂度为O(N).此时,平衡二叉树的产生了.平衡二叉树是一种动态调整平衡的数据结构,但理想的平衡二叉树很难,于是人们使用AVL.红黑树.Treap.伸展树等来替代平衡二叉树,这些数据

类图(Rose) - Windows XP经典软件系列

最近开始了自己高级数据结构之旅,在这次旅行中,我将持续把一些高级的数据结构从理论到编码都过一遍,同时通过博客形式分享出来,希望大家指出不足之处! 二叉排序树是一种动态排序的数据结构,支持插入.删除.查找等操作,且平均时间复杂度为O(log(N)),但是普通二叉排序树不能保证树退化为一颗分支的情况,此时最坏情况下的时间复杂度为O(N).此时,平衡二叉树的产生了.平衡二叉树是一种动态调整平衡的数据结构,但理想的平衡二叉树很难,于是人们使用AVL.红黑树.Treap.伸展树等来替代平衡二叉树,这些数据

一张图掌握移动Web前端所有技术(大前端、工程化、预编译、自动化)

你要的移动web前端都在这里! 大前端方向:移动Web前端.Native客户端.Node.js. 大前端框架:React.Vue.js.Koa 跨终端技术:HTML 5.CSS 3.JavaScript 跨平台框架:React Native.Cordova 前端工程化:Grunt.Gulp.Webpack 前端预编译:Babel.Sass.Less 自动化测试:Jasmine.Mocha.Karma 一图在手,应有尽有! 更多信息参考:https://item.jd.com/12170351.h

Java企业微信开发_08_JSSDK多图上传

一.本节要点 1.1可信域名 所有的JS接口只能在企业微信应用的可信域名下调用(包括子域名),可在企业微信的管理后台“我的应用”里设置应用可信域名.这个域名必须要通过ICP备案,不然jssdk会配置失败 1.2JS-SDK使用权限签名算法 1.2.1 签名生成规则如下: (1)参与签名的字段包括: noncestr(随机字符串), 有效的jsapi_ticket, timestamp(时间戳), url(当前网页的URL,不包含#及其后面部分) . (2)对所有待签名参数按照字段名的ASCII

以JPanel为基础实现一个图相框

代码: import java.awt.Graphics; import javax.swing.ImageIcon; import javax.swing.JPanel; public class Picture extends JPanel { private static final long serialVersionUID = -4437881316229152596L; private ImageIcon icon; public Picture(java.net.URL imgUR