用hadoop实现SimRank++算法(1)----权值转移矩阵的计算

本文主要针对广告检索领域的查询重写应用,根据查询-广告点击二部图,在MapReduce框架上实现SimRank++算法,关于SimRank++算法的背景和原理请参看前一篇文章《基于MapReduce的SimRank++算法研究与实现》。

SimRank++的矩阵形式的计算公式为:

算法主要步骤如下:

Step1: 计算权值矩阵,并获取最大Query编号和最大广告编号;

Step2: 以Step1的输出作为输入,迭代计算SimRank相似度。

Step3: 计算证据矩阵,并用计算结果修正Step2的输出,计算出最终的经过归一化的相似度分数。

Step4: 把Step3的输出转化为固定的格式,得到最终的相似度分数结果。

其中Step2迭代计算SimRank相似度分数比较复杂,由一系列的MapReduce作业组成。本文主要关注Step1,即计算权值矩阵的计算。Step2~4将在后续的文章中给出。

1.输入文件的格式

为了简单起见,在我们的实现中,用点击次数作为边的权值。一个更好的选择是用广告点击率(Click Through Rate, CTR)作为权值,理由如下:某个广告在q1下展示10000次,点击100次(CTR为0.01);在q2下展示1000次,点击90次(CTR为0.09);在q3下展示1000次,点击100次(CTR为0.1);显然q3和q2的相似度要比q3和q1的相似度要高,然而如果只考虑点击次数,那么算法会认为q3和q1的相似度比q3和q2的高。

期待的输入数据的文件格式:

1. Query和广告的点击关系数据文件(以下记为qas文件)的每一行的格式如下:

qas ^A queryid { ^A adid ^B clicknum}

其中,{ }表示内部的内容可以重复1次或多次,但至少一次;“qas”的标识字符串;‘^A’是ASCII码为1的不可见字符;‘^B’是ASCII码为2的不可见字符。

2. 广告和Query的点击关系数据文件(以下记为aqs文件)的每一行的格式如下:

aqs ^A adid { ^A queryid ^B clicknum}

其中,{ }表示内部的内容可以重复1次或多次,但至少一次;“aqs”的标识字符串;‘^A’是ASCII码为1的不可见字符;‘^B’是ASCII码为2的不可见字符。

上图所示的查询和广告之间的点击关系对应的文件格式如下:

qas文件
qas ^A 1 ^A 1 ^B 10 ^A 3 ^B 5
qas ^A 2 ^A 2 ^B 7 ^A 3 ^B 6

aqs文件
aqs ^A 1 ^A 1 ^B 10
aqs ^A 2 ^A 2 ^B 7
aqs ^A 3 ^A 1 ^B 5 ^A 2 ^B 6

2. 思路分析

权值矩阵元素的计算公式为:

可以看出, variance(a)的计算需要用到aqs文件, normalize_weight(q,a)的计算需要用到qas文件; variance(q)的计算需要用到qas文件, normalize(q,a)的计算需要用到aqs文件。从而,在计算W(a,q) 和 W(q,a)时都要用到aqs文件和qas文件,这使得MapReduce算法的设计比较困难。

考虑前面所述的一个简单例子。”Mapper”任务在处理qas文件时会计算出如下所示的内容。

”Mapper”任务在处理aqs文件时会计算出如下所示的内容。

在计算W(q,a)时需要使用到variance(a)和normalizedweight(q, a);在计算W(a,q)时需要使用到variance(q)和normalizedweight(a, q)。因此,根据以上分析,对于一个特定的q和a,需要把Map任务的输出中的variance(a)和normalizedweight(q, a)”Shuffle”到同一个”Reduce”节点,由该”Reduce”节点计算出W(q,a);同理,需要把”Map”任务的输出中的variance(q)和normalizedweight(a,
q) ”Shuffle”到同一个”Reduce”节点,由该”Reduce”节点计算出W(a,q)。

另外,可以看出,在计算W(q1,a), W(q2,a),……. 时都需要用到variance(a),因此我们希望计算 的“Reduce”节点接受到的值列表中variance(a)项排在所有normalized_weight(q, a)项之前。MapReduce框架在记录到达”Reducer”之前按键对记录排序,但键所对应的值并没有被排序。由于值来自不同的map任务,所以在多次运行程序时,值的出现顺序并不固定,导致每次运行作业的时间会各有不同。一般来说,大多数MapReduce程序无需考虑值在”Reduce”函数中出现的顺序。但是,像我们这里碰到的情况一样,有时确实需要通过对键进行排序和分组等以实现对值的排序。通过MapReduce框架辅助对记录值排序的方法总结如下:

(1) 定义包括自然键和自然值的组合键。

(2) 键的comparator根据组合键对记录进行排序,即同时利用自然键和自然值进行排序。

(3) 针对组合键partitioner和分组comparator在进行分区和分组时均只考虑自然键。

基于以上分析,计算权值矩阵的MapReduce任务需要小心地设计”Map”任务输出的Key和Value的数据结构以及”Partitioner”函数。

3. 算法实现

(1) Map任务输出的键(Key)的数据结构

键(Key)由一个三元组构成:< type, index1, index2 >

type用于标识index1是广告的编号(0),还是Query的编号(1);当type = 0时,对应的值(value)表示normalizedweight(q,a),其中q等于index1,a等于index2;当type = 1时,value表示normalizedweight(a,q),其中a等于index1,q等于index2;

另外,当index2 = -1时,表示对应的值为方差(variance(index1))。设为-1是为了保证同一组Key对应的值列表中方差项排在第一个。

键(Key)的三个元素都参与comparator的比较。

(2) Map任务输出的值(Value)的数据结构

值(Value)有一个二元组构成:< index, value >,其中index总是等于对应的键的第三个元素index2。这里看似冗余,其实不然。因为我们在利用MapReduce框架辅助排序时,分组函数(GroupComparator)只比较Key的前两个元素,忽略Key的第三个元素,这样只有Key的前两个元素的值相同,那么他们的值将合并到同一个列表中,有唯一的一个“Reduce”函数处理。MapReduce框架在默认情况下只会把key完全相同值合并到同一个列表中。因此我们需要设置OutputValueGroupingComparator为我们自定义的GroupComparator。可以利用如下的语句设置:

conf.setOutputValueGroupingComparator(GroupComparator.class);

(3) 分区函数

分区函数控制”Map”任务的每个输出记录由哪一个”Reduce”节点处理。在权值矩阵的计算作业中该函数的地位特别重要。根据上一小节的分析和辅助排序的要求,分区函数只考虑键的前两个元素。我们把”Reduce”节点分成两部分,一部分计算 ,另外一部分计算 。”Partition”函数的代码如下。

public int getPartition(Key key, Value value, int numPartitions)
{
    int offset = numPartitions / 2;
    if (key.type == 0)
    {
        int base = numPartitions - offset;
        return key.index1 % base + offset;
    }
    return key.index1 % offset;
}

(4) “Map”函数和”Reduce”函数

“Map”函数和”Reduce”函数并行地处理主要的工作。其中”Map”函数读入qas文件,计算出variance(q)和normalizedweight(a, q);读入aqs文件,输出variance(a)和normalizedweight(q, a)。同时为了以后的计算方便,”Map”函数还记录下最大的Query编号和最大的Ad编号。由于多个”Map”函数之间不能相互通信,为了得到全局的最大Query编号和Ad编号,每个Map函数结束的时候在一个指定的HDFS目录下新建一个以本函数统计出的当前最大编号为文件名的空文件,前提条件是此时该指定目录下还没有更大编号的文件存在。

“Reduce”函数比较简单,直接根据公式计算出最终的权值就可以了。”Reduce”输出的Key是一个二元组,表示权值矩阵的行号和列号。输出的值为相应的权值。由于我们在同一个作业中同时计算了Query-Ad的权值矩阵和Ad-Query的权值矩阵,这两个矩阵在后面的SimRank实现过程中需要单独使用,因此必须要把两种的输出区分开来。我们使用MultipleOutputs类定义了两个数据收集对象,这两个数据收集对象输出的文件名有不同的前缀。

“Mapper”和”Reducer”的伪代码如下。

计算权值矩阵的”Map”函数

Setup(){
    currMaxQueryId ← 0
    currMaxAdId ← 0
    dir ← “hdfs://namenode/…/XXX”
}
Map(line_no, line_txt){
content ← Parser(line_txt)
if (content.type == 1)
currMaxQueryId ← max(currMaxQueryId, content. id)
else
currMaxAdId ← max(currMaxAdId, content. id)
weight_sum ← sum(content.weights)
variance ← var(content.weights)
emit <content.type, content.id, -1>, <-1, variance>
for e in content.elements
normalized_weight ← e.weight / seight_sum
emit <content.type, content.id, e.id>, <e.id, variance>
}
Close(){
    Query_id ← getCurrentQueryId(dir)
    Ad_id ← getCurrentAdId(dir)
    If (currMaxQueryId > Query_id)
        Touch dir/ currMaxQueryId
    If (currMaxAdId > Ad_id)
        Touch dir/ currMaxAdId
}

计算权值矩阵的”Reduce”函数

Reduce(key, valueList){
    variance ← valueList[0]
    spread ← exp(-variance)
    for v in valueList[1]…valueList[N]
    emit <key.index1, v.index>, spread * v.value
}
时间: 2024-10-03 21:13:08

用hadoop实现SimRank++算法(1)----权值转移矩阵的计算的相关文章

HDU 1533 KM算法(权值最小的最佳匹配)

Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3299    Accepted Submission(s): 1674 Problem Description On a grid map there are n little men and n houses. In each unit time, every l

红外权值拟合

不同的算法适应不同的场合,而好的算法都是从以前的经验中提取出来的,只有理论没有实践的算法是闭门造车,从实践中归纳出来的解决问题的办法往往具有便捷性. 大一跟着学长做机器人省赛的时候拼的是时间,因为大一什么都不懂,而我们有的就是时间比较闲,学长做我们看,用俗话说就是跟着学长打酱油:等到大二自己真正动手做的时候,也是用的学长搭好的框架然后自己去在里面添加东西,没有太多思考自己的东西:大三会过来再看的时候突然发现就会时不时的出现一些新的想法,有时候就会产生一些思路去解决问题,这大概就是一个过程吧. 等

【权值线段树】离散化介绍 (+利用 线段树 求逆序对)

先介绍一下离散化 桶排大家应该知道,就是开一个数组(下标为数值,记录了该数值的出现次数)然后遍历过去如果出现次数不为零,那就输出这些数字,理论时间复杂度可以达到O(N)但是由于内存限制,不能开很大的数组. 然而 如果某个数列中的数字不要求大小确定,只要求这些数字有相对的大小就够了的话,离散化就有了用武之地 举个例子:数列 3 8 7 5 2000000000000000 我们发现有几个数之间差距很大,但是我们用不到数值的大小,只要求相对大小,那怎么办呢? 观察下面的数列: 1 4 3 2 5 真

【莫队算法】【权值分块】bzoj3920 Yuuna的礼物

[算法一] 暴力. 可以通过第0.1号测试点. 预计得分:20分. [算法二] 经典问题:区间众数,数据范围也不是很大,因此我们可以: ①分块,离散化,预处理出: <1>前i块中x出现的次数(差分): <2>第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现 的次数,加上差分的结果,尝试更新ans. 时间复杂度O(m*sqrt(n)), 空间复杂度O(n*sqrt(n)). ②考虑离线,莫队算法,转移的时候使用数据

hdoj 3435 A new Graph Game 【无向图判断权值最小哈密顿环】【KM算法】

A new Graph Game Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1934    Accepted Submission(s): 827 Problem Description An undirected graph is a graph in which the nodes are connected by undir

有向图单源非负权值回路最短路径——BellmanFord算法

BellmanFord算法是一种暴力求解算法O(N3),它考虑所有情况,所以可以允许边的权值为负.(不过不允许出现负权值回路,因为那样会出现无限小) 之所以说它暴力,是因为它求出了每个节点所有长度为1的路径,再求所有长度为2的路径,并更新最短路径数组dist[]和path[],如此迭代直至求到长度n-1的路径.(n为图节点个数) 整体来看,每个节点纵向比较,从1到n-1长度的路径中取最小值作为最终路径长度. 因为它考虑了所有情况,所以负边也可以算出. 因为暴力,复杂度比Dijkstra高一个数量

hdu 3790 最短路径问题(双重权值,dijkstra算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3790 题目大意:题意明了,输出最短路径及其花费. 需要注意的几点:(1)当最短路径相同时,输出最小花费!!! (2)更新路径的时候要注意更新花费. 1 #include <iostream> 2 #include <cstdio> 3 using namespace std; 4 const int INF=9999999; 5 int map[1010][1010],Min,n,co

poj3565 Ants km算法求最小权完美匹配,浮点权值

/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求是否存在n条边,每条边恰好连一个白点,一个黑点,且所有的边不相交. 输出所有黑点连接的白点编号. 思路:最小权完美匹配. 假定有白点1(a1,b1), 2(a2,b2), 黑点3(a3,b3),4(a4,b4); 如果1(a1,b1)与3(a3,b3)相连,2(a2,b2)与4(a4,b4)相连,如

D. Powerful array 离线+莫队算法 给定n个数,m次查询;每次查询[l,r]的权值; 权值计算方法:区间某个数x的个数cnt,那么贡献为cnt*cnt*x; 所有贡献和即为该区间的值;

D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input standard input output standard output An array of positive integers a1,?a2,?...,?an is given. Let us consider its arbitrary subarray al,?al?+?1...,?ar, where 1?