cuda记录

Lesson 2:

1.__syncthreads();

2.速度:local > share >> global >> host

3.coalesce,尽量读相近的memory,也即读写数组不要跳

4.赋值运算一定要小心,如a[i]=a[i]+1; read modified write
这时可用atomic运算,但是没有mod运算,且slow (如何自己改写???)

5.avoid thread diverge (why???)
if...else...
for

6.如何设置grid & block???

时间: 2024-10-01 09:48:38

cuda记录的相关文章

CUDA中记录执行时间

事件eventcudaEvent_t start,stop;cudaEventCreate(&start);cudaEventCreate(&stop);cudaEventRecord(start,0);{ //统计的代码段 …………}cudaEventRecord(stop,0);float costtime;cudaEventElapsedTime(&costtime,start,stop); cudaError_t cudaEventCreate( cudaEvent_t*

艰辛五天:Ubuntu14.04+显卡驱动+cuda+Theano环境安装过程

题记:从一开始不知道显卡就是GPU(虽然是学计算机的,但是我真的不知道-脑残如我也是醉了),到搞好所有这些环境前后弄了5天时间,前面的买显卡.装显卡和装双系统见另一篇博客装显卡.双系统,这篇主要记录我怎么配置后面的环境,虽然中间重装Ubuntu三次,后面安装过程也没差别. 基础平台:64-bit,Ubuntu14.04 1.安装NVIDIA驱动(参考技术文章,基本是复制啊,蟹蟹作者~) (1) 在官网下载NVIDIA驱动,根据自己买的型号选择下载,放到 /home/lvxia/ 目录下面,我下载

CUDA, 软件抽象的幻影背后 之三

本文原载于我的主页:planckscale.info,转载于此. 版权声明:原创作品,欢迎转载,但转载请以超链接形式注明文章来源(planckscale.info).作者信息和本声明,否则将追究法律责任. 上一篇中谈到了编程模型中的Block等概念如何映射到硬件上执行,以及CUDA如何用并行来掩盖延迟.这一篇继续剖析SIMT,谈一谈控制流分叉,指令吞吐和线程间通讯机制. 虽然我们说warp中的线程类似于SIMD,但事实上它是真正的线程.warp中的每一个thread都有自己的指令地址寄存器,允许

NVIDIA DIGITS 学习笔记(NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0)

转自:http://blog.csdn.net/enjoyyl/article/details/47397505?from=timeline&isappinstalled=0#10006-weixin-1-52626-6b3bffd01fdde4900130bc5a2751b6d1 NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0环境配置 引言 DIGITS简介 DIGITS特性 资源信息 说明 DIGI

CUDA从入门到精通

CUDA从入门到精通(零):写在前面 在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择.还有不到一年毕业,怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通,步步为营,顺便分享设计的一些经验教训,希望能给学习CUDA的童鞋提供一定指导.个人能力所及,错误难免,欢迎讨论. PS:申请专栏好像需要先发原创帖超过15篇...

cuda事件的使用

cudaEvent_t start,stop; cudaEventCreate(&start);//创建事件 cudaEventCreate(&stop); cudaEventRecord(start,0);//记录当前时间 //要记录时间的事情/工作 cudaEventRecord(stop,0);//记录当前时间 cudaEventSynchronize();//同步 float elapsedTime; cudaEventElapsedTime(&elapsedTime,st

Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明

笔者花了很长时间才装完,主要是cuda安装和opencv安装比较费劲,cuda找不到32位的安装包只好重装64位的ubuntu系统,opencv 也是尝试了很久才解决,这里建议用2.4.9版本.其实如果没用GPU的话不需要安装cuda,不过为了后续兼容性的考虑,系统强烈建议64位的.下面是 对自己的安装过程记录备忘,有些主要参考网上的文章,所以有些过程就直接用了原来文章中的内容. caffe在git上的源码:https://github.com/BVLC/caffe 环境:    ubuntu

[论文笔记] CUDA Cuts: Fast Graph Cuts on the GPU

Paper:V. Vineet, P. J. Narayanan. CUDA cuts: Fast graph cuts on the GPU. In Proc. CVPR Workshop, 2008. 原文出处: http://lincccc.blogspot.tw/2011/03/cuda-cuts-fast-graph-cuts-on-gpu_03.html 问题概述:Graph cut是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmenta

详解CUDA编程

CUDA 是 NVIDIA 的 GPGPU 模型,它使用 C 语言为基础,可以直接以大多数人熟悉的 C 语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构." 编者注:NVIDIA的GeFoce 8800GTX发布后,它的通用计算架构CUDA经过一年多的推广后,现在已经在有相当多的论文发表,在商业应用软件等方面也初步出现了视频编解码.金融.地质勘探.科学计算等领域的产品,是时候让我们对其作更深一步的了解.为了让大家更容易了解CUDA,我们征得Hotball的本人同