linux下Pl353 NAND Flash驱动分析

linux的NAND Flash驱动位于drivers/mtd/nand子目录下:

nand_base.c-->定义通用的nand flash基本操作函数,如读写page,可自己重写这些函数

nand_bbt.c-->与坏块管理有关的函数和结构体

nand_ids.c-->nand_flash_ids[](芯片ID)和nand_manuf_ids[](厂商ID)

nand_ecc.c-->软件ECC代码,若系统支持硬件ECC,则不用理会这个文件

pl353_nand.c-->pl353 nand flash控制器的驱动代码

#include <linux/err.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/memory/pl353-smc.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#define PL353_NAND_DRIVER_NAME "pl353-nand"

/* NAND flash driver defines */
#define PL353_NAND_CMD_PHASE	1	/* End command valid in command phase */
#define PL353_NAND_DATA_PHASE	2	/* End command valid in data phase */
#define PL353_NAND_ECC_SIZE	512	/* Size of data for ECC operation */

/* Flash memory controller operating parameters */

#define PL353_NAND_ECC_CONFIG	(BIT(4)  |	/* ECC read at end of page */ 				 (0 << 5))	/* No Jumping */

/* AXI Address definitions */
#define START_CMD_SHIFT		3
#define END_CMD_SHIFT		11
#define END_CMD_VALID_SHIFT	20
#define ADDR_CYCLES_SHIFT	21
#define CLEAR_CS_SHIFT		21
#define ECC_LAST_SHIFT		10
#define COMMAND_PHASE		(0 << 19)
#define DATA_PHASE		BIT(19)

#define PL353_NAND_ECC_LAST	BIT(ECC_LAST_SHIFT)	/* Set ECC_Last */
#define PL353_NAND_CLEAR_CS	BIT(CLEAR_CS_SHIFT)	/* Clear chip select */

#define ONDIE_ECC_FEATURE_ADDR	0x90
#define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
#define PL353_NAND_DEV_BUSY_TIMEOUT	(1 * HZ)
#define PL353_NAND_LAST_TRANSFER_LENGTH	4

/* Inline function for the NAND controller register write */
static inline void pl353_nand_write32(void __iomem *addr, u32 val)
{
	writel_relaxed((val), (addr));
}

/**
 * struct pl353_nand_command_format - Defines NAND flash command format
 * @start_cmd:		First cycle command (Start command)
 * @end_cmd:		Second cycle command (Last command)
 * @addr_cycles:	Number of address cycles required to send the address
 * @end_cmd_valid:	The second cycle command is valid for cmd or data phase
 */
struct pl353_nand_command_format {
	int start_cmd;
	int end_cmd;
	u8 addr_cycles;
	u8 end_cmd_valid;
};

/**
 * struct pl353_nand_info - Defines the NAND flash driver instance
 * @chip:		NAND chip information structure
 * @mtd:		MTD information structure
 * @parts:		Pointer to the mtd_partition structure
 * @nand_base:		Virtual address of the NAND flash device
 * @end_cmd_pending:	End command is pending
 * @end_cmd:		End command
 */
struct pl353_nand_info {
	struct nand_chip chip;
	struct mtd_info mtd;
	struct mtd_partition *parts;
	void __iomem *nand_base;
	unsigned long end_cmd_pending;
	unsigned long end_cmd;
};

/*
 * The NAND flash operations command format
 */
static const struct pl353_nand_command_format pl353_nand_commands[] = {
	{NAND_CMD_READ0, NAND_CMD_READSTART, 5, PL353_NAND_CMD_PHASE}, //read data
	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, PL353_NAND_CMD_PHASE},  //random Data output
	{NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE}, //read ID
	{NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE}, //read status
	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, PL353_NAND_DATA_PHASE}, //page program
	{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE},  //random data input
	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, PL353_NAND_CMD_PHASE}, //erase block
	{NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE},  //reset
	{NAND_CMD_PARAM, NAND_CMD_NONE, 1, NAND_CMD_NONE},
	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
	{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
	/* Add all the flash commands supported by the flash device and Linux */
	/*
	 * The cache program command is not supported by driver because driver
	 * cant differentiate between page program and cached page program from
	 * start command, these commands can be differentiated through end
	 * command, which doesn't fit in to the driver design. The cache program
	 * command is not supported by NAND subsystem also, look at 1612 line
	 * number (in nand_write_page function) of nand_base.c file.
	 * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, PL353_NAND_YES},
	 */
};

/* Define default oob placement schemes for large and small page devices */
//一般一页中每512字节会对应16字节的OOB空间
static struct nand_ecclayout nand_oob_16 = { //16表示OOB大小为16B,即页大小为512B时,使用这个ecclayout
	.eccbytes = 3, //对于pl353每512B数据产生3B的ecc校验值
	.eccpos = {0, 1, 2}, //ecc校验值在OOB中存放的位置
	.oobfree = {
		{.offset = 8, //空闲OOB的起始位置
		 . length = 8} }
};

static struct nand_ecclayout nand_oob_64 = { //页大小为2KB时,使用这个ecclayout
	.eccbytes = 12, //3*4
	.eccpos = {
		   52, 53, 54, 55, 56, 57,
		   58, 59, 60, 61, 62, 63},
	.oobfree = {
		{.offset = 2,
		 .length = 50} }
};
//ondie类型的nand flash使用这个ecclayout,不太清楚ondie是什么意思?
static struct nand_ecclayout ondie_nand_oob_64 = {
	.eccbytes = 32,

	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		24, 25, 26, 27, 28, 29, 30, 31,
		40, 41, 42, 43, 44, 45, 46, 47,
		56, 57, 58, 59, 60, 61, 62, 63
	},

	.oobfree = {
		{ .offset = 4, .length = 4 },
		{ .offset = 20, .length = 4 },
		{ .offset = 36, .length = 4 },
		{ .offset = 52, .length = 4 }
	}
};

/* Generic flash bbt decriptors */
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 4,
	.len = 4,
	.veroffs = 20,
	.maxblocks = 4,
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 4,
	.len = 4,
	.veroffs = 20,
	.maxblocks = 4,
	.pattern = mirror_pattern
};

/**
 * pl353_nand_calculate_hwecc - Calculate Hardware ECC
 * @mtd:	Pointer to the mtd_info structure
 * @data:	Pointer to the page data
 * @ecc_code:	Pointer to the ECC buffer where ECC data needs to be stored
 *
 * This function retrieves the Hardware ECC data from the controller and returns
 * ECC data back to the MTD subsystem.
 *
 * Return:	0 on success or error value on failure
 */
//从ecc寄存器中获取的ecc值会存放在ecc_code地址空间中
static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
				const u8 *data, u8 *ecc_code)
{
	u32 ecc_value, ecc_status;
	u8 ecc_reg, ecc_byte;
	unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;

	/* Wait till the ECC operation is complete or timeout */
	do {
		if (pl353_smc_ecc_is_busy())
			cpu_relax();
		else
			break;
	} while (!time_after_eq(jiffies, timeout));

	if (time_after_eq(jiffies, timeout)) {
		pr_err("%s timed out\n", __func__);
		return -ETIMEDOUT;
	}

	for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
		/* Read ECC value for each block */
		ecc_value = pl353_smc_get_ecc_val(ecc_reg);
		ecc_status = (ecc_value >> 24) & 0xFF;  //获取最高8bit的状态标记值
		/* ECC value valid */
		if (ecc_status & 0x40) {  //判断这个ecc寄存器的值是否是有效的
			for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
				/* Copy ECC bytes to MTD buffer */
				*ecc_code = ecc_value & 0xFF;
				ecc_value = ecc_value >> 8;
				ecc_code++;
			}
		} else {
			pr_warn("%s status failed\n", __func__);
			return -1;
		}
	}
	return 0;
}

/**
 * onehot - onehot function
 * @value:	Value to check for onehot
 *
 * This function checks whether a value is onehot or not.
 * onehot is if and only if onebit is set.
 *
 * Return:	1 if it is onehot else 0
 */
static int onehot(unsigned short value)
{
	return (value & (value - 1)) == 0;
}

/**
 * pl353_nand_correct_data - ECC correction function
 * @mtd:	Pointer to the mtd_info structure
 * @buf:	Pointer to the page data
 * @read_ecc:	Pointer to the ECC value read from spare data area
 * @calc_ecc:	Pointer to the calculated ECC value
 *
 * This function corrects the ECC single bit errors & detects 2-bit errors.
 *
 * Return:	0 if no ECC errors found
 *		1 if single bit error found and corrected.
 *		-1 if multiple ECC errors found.
 */
static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
				unsigned char *read_ecc,
				unsigned char *calc_ecc)
{
	unsigned char bit_addr;
	unsigned int byte_addr;
	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
	unsigned short calc_ecc_lower, calc_ecc_upper;

	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;

	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;

	ecc_odd = read_ecc_lower ^ calc_ecc_lower;  //异或:不同为1,相同为0
	ecc_even = read_ecc_upper ^ calc_ecc_upper;

        //如果异或结果都为0,则说明read_ecc和calc_ecc是相等的,没有出错,直接退出
	if ((ecc_odd == 0) && (ecc_even == 0))
		return 0;       /* no error */

	if (ecc_odd == (~ecc_even & 0xfff)) {
		/* bits [11:3] of error code is byte offset */
		byte_addr = (ecc_odd >> 3) & 0x1ff;  //第几个字节出错
		/* bits [2:0] of error code is bit offset */
		bit_addr = ecc_odd & 0x7;  //第几个bit出错
		/* Toggling error bit */
		buf[byte_addr] ^= (1 << bit_addr);  //纠正出错的bit位
		return 1;
	}

	if (onehot(ecc_odd | ecc_even) == 1)
		return 1; /* one error in parity */

	return -1; /* Uncorrectable error */
}

/**
 * pl353_nand_read_oob - [REPLACABLE] the most common OOB data read function
 * @mtd:	Pointer to the mtd info structure
 * @chip:	Pointer to the NAND chip info structure
 * @page:	Page number to read
 *
 * Return:	Always return zero
 */
//将page中的OOB数据读入chip->oob_poi中
static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
{
	unsigned long data_phase_addr;
	uint8_t *p;

        //发送读取OOB数据的命令
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);

	p = chip->oob_poi;
	chip->read_buf(mtd, p,
			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);

        //在读取最后4个字节数据时,需要将data_phase_addr的clear_cs位置1,
        //通知控制器这是最后的数据读取
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
	data_phase_addr |= PL353_NAND_CLEAR_CS;
	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
	chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);

	return 0;
}

/**
 * pl353_nand_write_oob - [REPLACABLE] the most common OOB data write function
 * @mtd:	Pointer to the mtd info structure
 * @chip:	Pointer to the NAND chip info structure
 * @page:	Page number to write
 *
 * Return:	Zero on success and EIO on failure
 */
static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
			     int page)
{
	int status = 0;
	const uint8_t *buf = chip->oob_poi;
	unsigned long data_phase_addr;

        //发送写命令
	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);

	chip->write_buf(mtd, buf,
			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
	buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);

        //在写最后4B数据时,需要设置end command valid,这样在写完所有的数据后,
        //写命令的第2个命令NAND_CMD_PAGEPROG才会有效,将数据真正地写入对应的OOB中。
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
	data_phase_addr |= PL353_NAND_CLEAR_CS; //设置clear cs位为1
	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);  //设置end command valid
	chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
	chip->write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);

	/* Send command to program the OOB data */
        //这条代码不需要,因为NAND_CMD_PAGEPROG已经在data_phase_addr中了
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/**
 * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
 * @mtd:		Pointer to the mtd info structure
 * @chip:		Pointer to the NAND chip info structure
 * @buf:		Pointer to the data buffer
 * @oob_required:	Caller requires OOB data read to chip->oob_poi
 * @page:		Page number to read
 *
 * Return:	Always return zero
 */
//将一个页中的数据读入buf中,将OOB数据读入chip->oob_poi中
static int pl353_nand_read_page_raw(struct mtd_info *mtd,
				struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	unsigned long data_phase_addr;
	uint8_t *p;

	chip->read_buf(mtd, buf, mtd->writesize);

	p = chip->oob_poi;
	chip->read_buf(mtd, p,
			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);

	data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
	data_phase_addr |= PL353_NAND_CLEAR_CS;
	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;

	chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
	return 0;
}

/**
 * pl353_nand_write_page_raw - [Intern] raw page write function
 * @mtd:		Pointer to the mtd info structure
 * @chip:		Pointer to the NAND chip info structure
 * @buf:		Pointer to the data buffer
 * @oob_required:	Caller requires OOB data read to chip->oob_poi
 *
 * Return:	Always return zero
 */
//将buf中一页的数据写入页中,并将chip->oob_poi中的数据写入oob区域
static int pl353_nand_write_page_raw(struct mtd_info *mtd,
				    struct nand_chip *chip,
				    const uint8_t *buf, int oob_required)
{
	unsigned long data_phase_addr;
	uint8_t *p;

	chip->write_buf(mtd, buf, mtd->writesize);

	p = chip->oob_poi;
	chip->write_buf(mtd, p,
			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);

	data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
	data_phase_addr |= PL353_NAND_CLEAR_CS;
	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
	chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;

	chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);

	return 0;
}

/**
 * nand_write_page_hwecc - Hardware ECC based page write function
 * @mtd:		Pointer to the mtd info structure
 * @chip:		Pointer to the NAND chip info structure
 * @buf:		Pointer to the data buffer
 * @oob_required:	Caller requires OOB data read to chip->oob_poi
 *
 * This functions writes data and hardware generated ECC values in to the page.
 *
 * Return:	Always return zero
 */
//将buf中一页的数据写入页中,并将硬件生成的ecc值写入oob区域
static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
				    struct nand_chip *chip, const uint8_t *buf,
				    int oob_required)
{
	int i, eccsize = chip->ecc.size;//为512,即一次ecc计算能处理多少字节数据
	int eccsteps = chip->ecc.steps; //一页数据需要多少次ecc计算,如:2KB页大小,要4次ecc计算
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	const uint8_t *p = buf;  //要写入页的数据
	uint32_t *eccpos = chip->ecc.layout->eccpos; //ecc在OOB中存放的位置
	unsigned long data_phase_addr;
	uint8_t *oob_ptr;

    //每次写512B数据,
	for ( ; (eccsteps - 1); eccsteps--) {
		chip->write_buf(mtd, p, eccsize);
		p += eccsize;
	}
	//在写最后一个512B的最后4B数据是,需要设置ECC_LAST来
    //通知硬件ecc模块当前是最后一个访问
	chip->write_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);

	/* Set ECC Last bit to 1 */
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
	data_phase_addr |= PL353_NAND_ECC_LAST;
	chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
	chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);

	/* Wait for ECC to be calculated and read the error values */
	p = buf;
	chip->ecc.calculate(mtd, p, &ecc_calc[0]);//获取刚刚硬件计算的ecc值

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);

	/* Clear ECC last bit */
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
	data_phase_addr &= ~PL353_NAND_ECC_LAST;
	chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;

	/* Write the spare area with ECC bytes *///写ecc到OOB区域
	oob_ptr = chip->oob_poi;
	chip->write_buf(mtd, oob_ptr,
			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));

	data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
	data_phase_addr |= PL353_NAND_CLEAR_CS;
	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
	chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
	chip->write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);

	return 0;
}

/**
 * pl353_nand_write_page_swecc - [REPLACABLE] software ecc based page write function
 * @mtd:		Pointer to the mtd info structure
 * @chip:		Pointer to the NAND chip info structure
 * @buf:		Pointer to the data buffer
 * @oob_required:	Caller requires OOB data read to chip->oob_poi
 *
 * Return:	Always return zero
 */
static int pl353_nand_write_page_swecc(struct mtd_info *mtd,
				    struct nand_chip *chip, const uint8_t *buf,
				    int oob_required)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	const uint8_t *p = buf;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/* Software ecc calculation */
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	chip->ecc.write_page_raw(mtd, chip, buf, 1);

	return 0;
}

/**
 * pl353_nand_read_page_hwecc - Hardware ECC based page read function
 * @mtd:		Pointer to the mtd info structure
 * @chip:		Pointer to the NAND chip info structure
 * @buf:		Pointer to the buffer to store read data
 * @oob_required:	Caller requires OOB data read to chip->oob_poi
 * @page:		Page number to read
 *
 * This functions reads data and checks the data integrity by comparing hardware
 * generated ECC values and read ECC values from spare area.
 *
 * Return:	0 always and updates ECC operation status in to MTD structure
 */
static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
				     struct nand_chip *chip,
				     uint8_t *buf, int oob_required, int page)
{
	int i, stat, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	unsigned long data_phase_addr;
	uint8_t *oob_ptr;

	for ( ; (eccsteps - 1); eccsteps--) {
		chip->read_buf(mtd, p, eccsize);
		p += eccsize;
	}
	chip->read_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);

	/* Set ECC Last bit to 1 */
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
	data_phase_addr |= PL353_NAND_ECC_LAST;
	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
	chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);

	/* Read the calculated ECC value */
	p = buf;
	chip->ecc.calculate(mtd, p, &ecc_calc[0]);

	/* Clear ECC last bit */
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
	data_phase_addr &= ~PL353_NAND_ECC_LAST;
	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;

	/* Read the stored ECC value */
	oob_ptr = chip->oob_poi;
	chip->read_buf(mtd, oob_ptr,
			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));

	/* de-assert chip select */
	data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
	data_phase_addr |= PL353_NAND_CLEAR_CS;
	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;

	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
	chip->read_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);

	eccsteps = chip->ecc.steps;
	p = buf;

	/* Check ECC error for all blocks and correct if it is correctable */
	//使用ecc对读出来的数据进行检查,如果发现错误就尝试纠正
	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0) //如果返回值为-1,表示发生了不可纠正的错误
			mtd->ecc_stats.failed++;
		else  //返回0或者1,表示没有错误或发生了可纠正的错误
			mtd->ecc_stats.corrected += stat;
	}
	return 0;
}

/**
 * pl353_nand_read_page_swecc - [REPLACABLE] software ecc based page read function
 * @mtd:		Pointer to the mtd info structure
 * @chip:		Pointer to the NAND chip info structure
 * @buf:		Pointer to the buffer to store read data
 * @oob_required:	Caller requires OOB data read to chip->oob_poi
 * @page:		Page number to read
 *
 * Return:	Always return zero
 */
static int pl353_nand_read_page_swecc(struct mtd_info *mtd,
				     struct nand_chip *chip,
				     uint8_t *buf,  int oob_required, int page)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	chip->ecc.read_page_raw(mtd, chip, buf, page, 1);

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = chip->oob_poi[eccpos[i]];

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}
	return 0;
}

/**
 * pl353_nand_select_chip - Select the flash device
 * @mtd:	Pointer to the mtd info structure
 * @chip:	Pointer to the NAND chip info structure
 *
 * This function is empty as the NAND controller handles chip select line
 * internally based on the chip address passed in command and data phase.
 */
static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
{
	return;
}

/**
 * pl353_nand_cmd_function - Send command to NAND device
 * @mtd:	Pointer to the mtd_info structure
 * @command:	The command to be sent to the flash device
 * @column:	The column address for this command, -1 if none
 * @page_addr:	The page address for this command, -1 if none
 */
static void pl353_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
				 int column, int page_addr)
{
	struct nand_chip *chip = mtd->priv;
	const struct pl353_nand_command_format *curr_cmd = NULL;
	struct pl353_nand_info *xnand =
		container_of(mtd, struct pl353_nand_info, mtd);
	void __iomem *cmd_addr;
	unsigned long cmd_data = 0, end_cmd_valid = 0;
	unsigned long cmd_phase_addr, data_phase_addr, end_cmd, i;
	unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;

	if (xnand->end_cmd_pending) {//如果end_cmd_pending为1,表示前一次调用这个函数的命令有end command
		/*
		 * Check for end command if this command request is same as the
		 * pending command then return
		 */
		if (xnand->end_cmd == command) {
			xnand->end_cmd = 0;
			xnand->end_cmd_pending = 0;
			return;
		}
	}

	/* Emulate NAND_CMD_READOOB for large page device */
	if ((mtd->writesize > PL353_NAND_ECC_SIZE) &&
	    (command == NAND_CMD_READOOB)) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* Get the command format */
	for (i = 0; (pl353_nand_commands[i].start_cmd != NAND_CMD_NONE ||
		     pl353_nand_commands[i].end_cmd != NAND_CMD_NONE); i++)
		if (command == pl353_nand_commands[i].start_cmd)
			curr_cmd = &pl353_nand_commands[i];

	if (curr_cmd == NULL)//如果为空,表示当前命令是无效的,退出
		return;

	/* Clear interrupt */
	pl353_smc_clr_nand_int();

	/* Get the command phase address */
	if (curr_cmd->end_cmd_valid == PL353_NAND_CMD_PHASE)
		end_cmd_valid = 1;

	if (curr_cmd->end_cmd == NAND_CMD_NONE)
		end_cmd = 0x0;
	else
		end_cmd = curr_cmd->end_cmd;
	//cmd_phase_addr和data_phase_addr的意义需要看pl353数据手册
	//在pl353中命令参数是包含在命令阶段地址和数据阶段地址中的
	cmd_phase_addr = (unsigned long __force)xnand->nand_base        |
			 (curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT)    | //地址周期的个数
			 (end_cmd_valid << END_CMD_VALID_SHIFT)          |
			 (COMMAND_PHASE)                                 | //为0,表示这是命令阶段地址
			 (end_cmd << END_CMD_SHIFT)                      |
			 (curr_cmd->start_cmd << START_CMD_SHIFT);

	cmd_addr = (void __iomem * __force)cmd_phase_addr;

	/* Get the data phase address */
	end_cmd_valid = 0;

	data_phase_addr = (unsigned long __force)xnand->nand_base       |
			  (0x0 << CLEAR_CS_SHIFT)                         |
			  (end_cmd_valid << END_CMD_VALID_SHIFT)          |
			  (DATA_PHASE)                                    | //为1,表示这个数据阶段地址
			  (end_cmd << END_CMD_SHIFT)                      |
			  (0x0 << ECC_LAST_SHIFT);

	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
	chip->IO_ADDR_W = chip->IO_ADDR_R;

	/* Command phase AXI write */
	/* Read & Write */
	//根据column和page_addr等参数,生成要发送的地址cmd_data
	if (column != -1 && page_addr != -1) {
		/* Adjust columns for 16 bit bus width */
		if (chip->options & NAND_BUSWIDTH_16)
			column >>= 1;
		cmd_data = column;
		if (mtd->writesize > PL353_NAND_ECC_SIZE) {
			cmd_data |= page_addr << 16;
			/* Another address cycle for devices > 128MiB */
			if (chip->chipsize > (128 << 20)) {
				pl353_nand_write32(cmd_addr, cmd_data);//如果是大页,在这里先发送前4个周期的地址
				cmd_data = (page_addr >> 16);
			}
		} else {
			cmd_data |= page_addr << 8;
		}
	} else if (page_addr != -1) {
		/* Erase */
		cmd_data = page_addr;
	} else if (column != -1) {
		/*
		 * Change read/write column, read id etc
		 * Adjust columns for 16 bit bus width
		 */
		if ((chip->options & NAND_BUSWIDTH_16) &&
			((command == NAND_CMD_READ0) ||
			(command == NAND_CMD_SEQIN) ||
			(command == NAND_CMD_RNDOUT) ||
			(command == NAND_CMD_RNDIN)))
				column >>= 1;
		cmd_data = column;
	}
	//发送小页的4个周期地址或者大页的第5个周期地址
	pl353_nand_write32(cmd_addr, cmd_data);

	//如果当前命令有end command,则将xnand->end_cmd_pending置1
	if (curr_cmd->end_cmd_valid) {
		xnand->end_cmd = curr_cmd->end_cmd;
		xnand->end_cmd_pending = 1;
	}
	//延时,等待命令完成
	ndelay(100);

	if ((command == NAND_CMD_READ0) ||
	    (command == NAND_CMD_RESET) ||
	    (command == NAND_CMD_PARAM) ||
	    (command == NAND_CMD_GET_FEATURES)) {

		/* Wait till the device is ready or timeout */
		do {
			if (chip->dev_ready(mtd))
				break;
			else
				cpu_relax();
		} while (!time_after_eq(jiffies, timeout));

		if (time_after_eq(jiffies, timeout))
			pr_err("%s timed out\n", __func__);
		return;
	}
}

/**
 * pl353_nand_read_buf - read chip data into buffer
 * @mtd:	Pointer to the mtd info structure
 * @buf:	Pointer to the buffer to store read data
 * @len:	Number of bytes to read
 */
static void pl353_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;
	unsigned long *ptr = (unsigned long *)buf;

	len >>= 2;
	for (i = 0; i < len; i++)
		ptr[i] = readl(chip->IO_ADDR_R);//通过IO_ADDR_R地址读取数据
}

/**
 * pl353_nand_write_buf - write buffer to chip
 * @mtd:	Pointer to the mtd info structure
 * @buf:	Pointer to the buffer to store read data
 * @len:	Number of bytes to write
 */
static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;
	unsigned long *ptr = (unsigned long *)buf;

	len >>= 2;

	for (i = 0; i < len; i++)
		writel(ptr[i], chip->IO_ADDR_W);
}

/**
 * pl353_nand_device_ready - Check device ready/busy line
 * @mtd:	Pointer to the mtd_info structure
 *
 * Return:	0 on busy or 1 on ready state
 */
//查询设备是否处于空闲状态
static int pl353_nand_device_ready(struct mtd_info *mtd)
{
	if (pl353_smc_get_nand_int_status_raw()) {
		pl353_smc_clr_nand_int();
		return 1;
	}
	return 0;
}

/**
 * pl353_nand_detect_ondie_ecc - Get the flash ondie ecc state
 * @mtd:	Pointer to the mtd_info structure
 *
 * This function enables the ondie ecc for the Micron ondie ecc capable devices
 *
 * Return:	1 on detect, 0 if fail to detect
 */
static int pl353_nand_detect_ondie_ecc(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	u8 maf_id, dev_id, i, get_feature;
	u8 set_feature[4] = { 0x08, 0x00, 0x00, 0x00 };

	/* Check if On-Die ECC flash */
	nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
	//发送ReadID的命令:0x90去取得nand 芯片的ID信息
	nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

	/* Read manufacturer and device IDs */
	maf_id = readb(nand_chip->IO_ADDR_R);//第一个字节是厂商ID
	dev_id = readb(nand_chip->IO_ADDR_R);//第二个字节是芯片ID

	if ((maf_id == NAND_MFR_MICRON) &&
	    ((dev_id == 0xf1) || (dev_id == 0xa1) ||
	     (dev_id == 0xb1) || (dev_id == 0xaa) ||
	     (dev_id == 0xba) || (dev_id == 0xda) ||
	     (dev_id == 0xca) || (dev_id == 0xac) ||
	     (dev_id == 0xbc) || (dev_id == 0xdc) ||
	     (dev_id == 0xcc) || (dev_id == 0xa3) ||
	     (dev_id == 0xb3) ||
	     (dev_id == 0xd3) || (dev_id == 0xc3))) {

		nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
				   ONDIE_ECC_FEATURE_ADDR, -1);
		get_feature = readb(nand_chip->IO_ADDR_R);

		if (get_feature & 0x08) {
			return 1;
		} else {
			nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
					   ONDIE_ECC_FEATURE_ADDR, -1);
			for (i = 0; i < 4; i++)
				writeb(set_feature[i], nand_chip->IO_ADDR_W);

			ndelay(1000);

			nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
					   ONDIE_ECC_FEATURE_ADDR, -1);
			get_feature = readb(nand_chip->IO_ADDR_R);

			if (get_feature & 0x08)
				return 1;

		}
	}

	return 0;
}

/**
 * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
 * @mtd:	Pointer to the mtd_info structure
 * @ondie_ecc_state:	ondie ecc status
 *
 * This function initializes the ecc block and functional pointers as per the
 * ecc mode
 */
static void pl353_nand_ecc_init(struct mtd_info *mtd, int ondie_ecc_state)
{
	struct nand_chip *nand_chip = mtd->priv;

	nand_chip->ecc.mode = NAND_ECC_HW;//使用硬件ecc
	nand_chip->ecc.read_oob = pl353_nand_read_oob;
	nand_chip->ecc.read_page_raw = pl353_nand_read_page_raw;
	nand_chip->ecc.strength = 1;
	nand_chip->ecc.write_oob = pl353_nand_write_oob;
	nand_chip->ecc.write_page_raw = pl353_nand_write_page_raw;

	if (ondie_ecc_state) {
		/* bypass the controller ECC block */
		pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);

		/*
		 * The software ECC routines won't work with the
		 * SMC controller
		 */
		nand_chip->ecc.bytes = 0;
		nand_chip->ecc.layout = &ondie_nand_oob_64;
		nand_chip->ecc.read_page = pl353_nand_read_page_raw;
		nand_chip->ecc.write_page = pl353_nand_write_page_raw;
		nand_chip->ecc.size = mtd->writesize;
		/*
		 * On-Die ECC spare bytes offset 8 is used for ECC codes
		 * Use the BBT pattern descriptors
		 */
		nand_chip->bbt_td = &bbt_main_descr;
		nand_chip->bbt_md = &bbt_mirror_descr;
	} else {
		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
		nand_chip->ecc.bytes = 3;
		nand_chip->ecc.calculate = pl353_nand_calculate_hwecc;
		nand_chip->ecc.correct = pl353_nand_correct_data;
		nand_chip->ecc.hwctl = NULL;
		nand_chip->ecc.read_page = pl353_nand_read_page_hwecc;
		nand_chip->ecc.size = PL353_NAND_ECC_SIZE;
		nand_chip->ecc.write_page = pl353_nand_write_page_hwecc;

		pl353_smc_set_ecc_pg_size(mtd->writesize);
		switch (mtd->writesize) {
		case 512:
		case 1024:
		case 2048:
			pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
			break;
		default:
			/*
			 * The software ECC routines won't work with the
			 * SMC controller
			 */
			nand_chip->ecc.calculate = nand_calculate_ecc;
			nand_chip->ecc.correct = nand_correct_data;
			nand_chip->ecc.read_page = pl353_nand_read_page_swecc;
			nand_chip->ecc.write_page = pl353_nand_write_page_swecc;
			nand_chip->ecc.size = 256;
			break;
		}
		//如果这里没有设置layout的值,将会在nand_scan_tail中再次根据oobsize的
		//值来设置一个默认的layout
		if (mtd->oobsize == 16) //一般页中每512字节会分配16字节的OOB空间
			nand_chip->ecc.layout = &nand_oob_16;
		else if (mtd->oobsize == 64)
			nand_chip->ecc.layout = &nand_oob_64;
	}
}

/**
 * pl353_nand_probe - Probe method for the NAND driver
 * @pdev:	Pointer to the platform_device structure
 *
 * This function initializes the driver data structures and the hardware.
 *
 * Return:	0 on success or error value on failure
 */
static int pl353_nand_probe(struct platform_device *pdev)
{
	struct pl353_nand_info *xnand;
	struct mtd_info *mtd;
	struct nand_chip *nand_chip;
	struct resource *res;
	struct mtd_part_parser_data ppdata;
	int ondie_ecc_state;

	xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL);
	if (!xnand)
		return -ENOMEM;

	/* Map physical address of NAND flash */
	//映射nand flash的基地值,这个值在pl353数据手册中设定
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	xnand->nand_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(xnand->nand_base))
		return PTR_ERR(xnand->nand_base);

	/* Link the private data with the MTD structure */
	mtd = &xnand->mtd;
	nand_chip = &xnand->chip;

	nand_chip->priv = xnand;
	mtd->priv = nand_chip;
	mtd->owner = THIS_MODULE;
	mtd->name = PL353_NAND_DRIVER_NAME;

	/* Set address of NAND IO lines */
	nand_chip->IO_ADDR_R = xnand->nand_base;
	nand_chip->IO_ADDR_W = xnand->nand_base;

	//如果nand_chip的一些函数没有在这里实现,则会在nand_base.c文件的
	//nand_set_defaults函数中将他们设置为nand_base.c中通用的函数
	/* Set the driver entry points for MTD */
	nand_chip->cmdfunc = pl353_nand_cmd_function;
	nand_chip->dev_ready = pl353_nand_device_ready;
	nand_chip->select_chip = pl353_nand_select_chip;

	/* If we don't set this delay driver sets 20us by default */
	nand_chip->chip_delay = 30;

	/* Buffer read/write routines */
	nand_chip->read_buf = pl353_nand_read_buf;
	nand_chip->write_buf = pl353_nand_write_buf;

	/* Set the device option and flash width */
	nand_chip->options = NAND_BUSWIDTH_AUTO;//根据硬件,自动设置nand总线宽度
	nand_chip->bbt_options = NAND_BBT_USE_FLASH;//bbt存放在nand中

	platform_set_drvdata(pdev, xnand);

	ondie_ecc_state = pl353_nand_detect_ondie_ecc(mtd);

	/* first scan to find the device and get the page size */
	if (nand_scan_ident(mtd, 1, NULL)) {
		dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
		return -ENXIO;
	}

	pl353_nand_ecc_init(mtd, ondie_ecc_state);
	if (nand_chip->options & NAND_BUSWIDTH_16)
		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);

	/* second phase scan */
	//在nand_scan_tail函数功能:对nand_chip->ecc和mtd余下部分赋值,建立坏块表等
	if (nand_scan_tail(mtd)) {
		dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
		return -ENXIO;
	}

	ppdata.of_node = pdev->dev.of_node;

	mtd_device_parse_register(&xnand->mtd, NULL, &ppdata, NULL, 0);

	return 0;
}

/**
 * pl353_nand_remove - Remove method for the NAND driver
 * @pdev:	Pointer to the platform_device structure
 *
 * This function is called if the driver module is being unloaded. It frees all
 * resources allocated to the device.
 *
 * Return:	0 on success or error value on failure
 */
static int pl353_nand_remove(struct platform_device *pdev)
{
	struct pl353_nand_info *xnand = platform_get_drvdata(pdev);

	/* Release resources, unregister device */
	nand_release(&xnand->mtd);
	/* kfree(NULL) is safe */
	kfree(xnand->parts);

	return 0;
}

/* Match table for device tree binding */
static const struct of_device_id pl353_nand_of_match[] = {
	{ .compatible = "arm,pl353-nand-r2p1" },
	{},
};
MODULE_DEVICE_TABLE(of, pl353_nand_of_match);

/*
 * pl353_nand_driver - This structure defines the NAND subsystem platform driver
 */
static struct platform_driver pl353_nand_driver = {
	.probe		= pl353_nand_probe,
	.remove		= pl353_nand_remove,
	.driver		= {
		.name	= PL353_NAND_DRIVER_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = pl353_nand_of_match,
	},
};

module_platform_driver(pl353_nand_driver);

MODULE_AUTHOR("Xilinx, Inc.");
MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
MODULE_LICENSE("GPL");

//在nand_scan_ident函数中会调用nand_get_flash_type函数,这个函数很重要,主要是获取
//nand flash一些基本参数,如页大小,块大小等。
/*
 * Get the flash and manufacturer id and lookup if the type is supported.
 */
static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
						  struct nand_chip *chip,
						  int *maf_id, int *dev_id,
						  struct nand_flash_dev *type)
{
	int busw;//硬件的总线宽度
	int i, maf_idx;
	u8 id_data[8];

	/* Select the device */
	chip->select_chip(mtd, 0);//选中芯片,才能对其操作

	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
	 * after power-up.
	 */
	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

	/* Send the command for reading device ID */
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

	/* Read manufacturer and device IDs */
	*maf_id = chip->read_byte(mtd);
	*dev_id = chip->read_byte(mtd);

	/*
	 * Try again to make sure, as some systems the bus-hold or other
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
	//获取整个ID数据,总共有8字节
	/* Read entire ID string */
	for (i = 0; i < 8; i++)
		id_data[i] = chip->read_byte(mtd);
	//判断第二次读取的ID是否与第一次读取的一样,不一样则说明设备有问题
	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
			*maf_id, *dev_id, id_data[0], id_data[1]);
		return ERR_PTR(-ENODEV);
	}

	if (!type)
		type = nand_flash_ids;

	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
				goto ident_done;
		} else if (*dev_id == type->dev_id) {//找到这个芯片ID对应的nand_flash_dev
				break;
		}
	}

	chip->onfi_version = 0;
	if (!type->name || !type->pagesize) {
		/* Check if the chip is ONFI compliant */
		if (nand_flash_detect_onfi(mtd, chip, &busw))
			goto ident_done;

		/* Check if the chip is JEDEC compliant */
		if (nand_flash_detect_jedec(mtd, chip, &busw))
			goto ident_done;
	}
	//name为空,表示没有在nand_flash_ids数组中找到此芯片ID对应的设备
	if (!type->name)
		return ERR_PTR(-ENODEV);

	if (!mtd->name)
		mtd->name = type->name;

	chip->chipsize = (uint64_t)type->chipsize << 20;

	if (!type->pagesize && chip->init_size) {
		/* Set the pagesize, oobsize, erasesize by the driver */
		busw = chip->init_size(mtd, chip, id_data);
	} else if (!type->pagesize) {
		/* Decode parameters from extended ID */
		nand_decode_ext_id(mtd, chip, id_data, &busw);
	} else {
        //如果type->pagesize不为0,则使用type的参数来设置
		//mtd中芯片writesize,oobsize,erasesize的值
		nand_decode_id(mtd, chip, type, id_data, &busw);
	}
	/* Get chip options */
	chip->options |= type->options;

	/*
	 * Check if chip is not a Samsung device. Do not clear the
	 * options for chips which do not have an extended id.
	 */
	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:

	/* Try to identify manufacturer */
	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
		if (nand_manuf_ids[maf_idx].id == *maf_id)
			break;
	}

	if (chip->options & NAND_BUSWIDTH_AUTO) {//根据硬件,自动设在总线宽度
		WARN_ON(chip->options & NAND_BUSWIDTH_16);
		chip->options |= busw;
		nand_set_defaults(chip, busw);
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		//否则检测驱动中关于位宽的定义是否和硬件一致
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
			*maf_id, *dev_id);
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
		pr_warn("bus width %d instead %d bit\n",
			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
			   busw ? 16 : 8);
		return ERR_PTR(-EINVAL);
	}

	nand_decode_bbm_options(mtd, chip, id_data);

	/* Calculate the address shift from the page size */
	chip->page_shift = ffs(mtd->writesize) - 1;
	/* Convert chipsize to number of pages per chip -1 */
	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;

	chip->bbt_erase_shift = chip->phys_erase_shift =
		ffs(mtd->erasesize) - 1;
	if (chip->chipsize & 0xffffffff)//判断是否超过4GB,估计是ffs函数最多支持32位
		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
	else {
		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
		chip->chip_shift += 32 - 1;
	}

	chip->badblockbits = 8;
	chip->erase = single_erase;

	/* Do not replace user supplied command function! */
	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
		chip->cmdfunc = nand_command_lp;//大页使用的默认命令函数

	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
		*maf_id, *dev_id);

	if (chip->onfi_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->onfi_params.model);
	else if (chip->jedec_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->jedec_params.model);
	else
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				type->name);

	pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
		mtd->writesize, mtd->oobsize);
	return type;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-05 22:43:07

linux下Pl353 NAND Flash驱动分析的相关文章

NAND FLASH 驱动分析

NAND FLASH是一个存储芯片 那么: 这样的操作很合理"读地址A的数据,把数据B写到地址A" 问1. 原理图上NAND FLASH和S3C2440之间只有数据线, 怎么传输地址? 答1.在DATA0-DATA7上既传输数据,又传输地址 当ALE为高电平时传输的是地址, 问2. 从NAND FLASH芯片手册可知,要操作NAND FLASH需要先发出命令 怎么传入命令? 答2.在DATA0-DATA7上既传输数据,又传输地址,也传输命令 当ALE为高电平时传输的是地址, 当CLE为

【详解】如何编写Linux下Nand Flash驱动

From: http://www.crifan.com/files/doc/docbook/linux_nand_driver/release/html/linux_nand_driver.html 版本:v2.2 Crifan Li 摘要 本文先解释了Nand Flash相关的一些名词,再从Flash硬件机制开始,介绍到Nand Flash的常见的物理特性,且深入介绍了Nand Flash的一些高级功能,然后开始介绍Linux下面和Nand Flash相关的软件架构MTD的相关知识,最后介绍了

Linux 下 Nand Flash 驱动说明

注册 driver_register 通过 module_init(s3c2410_nand_init);注册 Nand Flash 驱动. 在 s3c2410_nand_init ()中通过 driver_register()注册 s3c2410_nand_driver 驱动程序,如下所示: static struct device_driver s3c2410_nand_driver = { .name          = "s3c2410-nand", .bus        

Linux下常用的系统性能查看分析工具

Linux中,很多很全面显示系统当前运行状态,负载,I/O等信息的工具,帮助管理员实时了解系统运行动态,以及排除故障. ps命令:显示进程状态,快照方式显示. 进程分为两类:一类是用户通过终端启动的进程,一类是与终端无关的进程,多为守护进程. ps命令支持两种风格的命令:SysV风格 BDS风格.带横线的是SysV风格. ps命令选项:     a  :与终端有关的进程     x  : 与终端无关的进程     u  : 显示是哪个用户启动的       -e : 显示所有进程     -f 

Linux下Chromium使用flash的办法

环境说明: 系统:  CentOS 6.5 X64 很简单,主要原因是在启动Chromium的时候指定了自有的Flash,我们可以在启动参数上去除指定的Flash! sudo vim  /usr/bin/chromium-browser CHROMIUM_RHEL_FLAGS="--enable-plugins --enable-extensions --enable-user-scripts --enable-printing --enable-sync --auto-ssl-client-a

linux 下安装adobe flash的关键。

记得第一次使用linux的时候真心觉得很麻烦,各种不适应.那时装个软件都弄得要生要死的.虽说最后也装了出来.第二次用linux就适应多了. 这是第一次查看的方法: linux下安装flash插件的解决方法 我们经常需要在linux服务器下查看在线文档,这时需要用到flash插件,以下讲解一下flash插件安装方法一(适用于ubuntu等linux系统): 1.在安装flash插件,最好把firefox升级到8.0版本: 2.从adobe官方网站下载flash的安装包(install_flash_

Linux 下 Nand Flash 驱动主要数据结构说明

s3c2410 专有数据结构 s3c2410_nand_set struct s3c2410_nand_set { int                    nr_chips;     /* 芯片的数目 */ int                    nr_partitions; /* 分区的数目 */ char                   *name;          /* 集合名称   */ int                   nr_map;       /* 可选

u-boot分析(九)----nand flash初始化|nand flash读写分析

u-boot分析(九) 上篇博文我们按照210的启动流程,分析到了初始化串口,由于接下来的取消存储保护不是很重要,所以我们今天按照u-boot的启动流程对nand flash初始化进行分析. 今天我们会用到的文档: 1.        2440芯片手册:http://download.csdn.net/detail/wrjvszq/8358949 2.        6410芯片手册:http://download.csdn.net/detail/wrjvszq/8358965 3.      

linux下安装编译网卡驱动的方法

安装linux操作系统后发现没有网卡驱动,表现为 system → Administration → Network下Hardware列表为空. 以下为安装编译网卡驱动的过程,本人是菜鸟,以下是我从网上找的资料进行整理,并实际操作的过程,仅供借鉴.  一.检测linux系统内核版本和网卡类型,相关命令如下: uname -r                    查看linux内核版本 (uname -a 可显示所有信息)lsmod                        设备加载情况 l