caffe安装过程记载

前言:网上很多CAFFE安装教程,自己装的过程跟网上还是有出入,把各种问题都记录下来,方便以后查找

首先,是学习了寒老师的安装教程, 地址https://www.zybuluo.com/hanxiaoyang/note/364680

我使用的是centos7.2, 符合教程中的要求。

安装到教程中第5步,出现了numpy安装不上的问题,多安装两边就装上了。这一个环节是一个都不能少,少了就别先急着往下走。

一直到第10步,没有什么问题。

贴一下我的makefile.config, 我的是带GPU的,关于装驱动一会说

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
#CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you‘re using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda-7.5
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
BLAS_INCLUDE := /usr/include/openblas
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
        # $(ANACONDA_HOME)/include/python2.7 \
        # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib64
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

如果没有GPU,make -j4的时候就会出错,提示找不到cblas.h,看看路径配置BLAS_INCLUDE := /usr/include/openblas是不是对的

编译完成后,make runtest, 直接报错找不到libpython2.7.so, 这里是动态库加载不上,路径配置问题。因为我的是64位系统,因此PYTHON_LIB := /usr/lib64,这些地方都是不同的机器可能会不一样,最好的办法,是查找一下缺少的SO或者H文件,本质上都是编译运行问题。

make pytest 又报告segmentation error, 查找了一下,好像是环境变量配置问题,但是没有解决。最后直接先安装tensorflow去了,装好了发现居然可以了。。。估计是装tensorflow的时候,附带命令装好了python.

下面说安装nvidia和cuda

NVIDIA的安装教程网上都有,都是一样的。问题是,他们都没提到最后安装时,会遇到没有内核的问题。

安装好了NVIDIA驱动,CUDA没有问题。

然后就可以使用了。

时间: 2024-10-03 05:35:02

caffe安装过程记载的相关文章

[转]Caffe安装过程记录(CentOS,无独立显卡,无GPU)

Caffe安装过程记录(CentOS,无独立显卡,无GPU) 原文地址:http://www.aiuxian.com/article/p-2410195.html 参考资料: http://www.tuicool.com/articles/uiuA3e Caffe 安装配置(CentOS + 无GPU) http://blog.sina.com.cn/s/blog_990865340102vewt.html caffe 安装配置(CentOS 6.5 + 无GPU) http://www.cnb

Caffe安装笔记二:Caffe安装过程

下面开始正题,caffe的安装过程.因为出问题很多,所以实际上我是尝试了python2和python3两种python的接口.下面一并放出来. 1. 安装build-essential sudo apt-get install build-essential 这个是一些基本的库,具体包括哪些,安装前确认时会显示,印象中有gcc等等. 2. boost安装 caffe官网给出的是sudo apt-get install --no-install-recommends libboost-all-de

caffe安装笔记

caffe安装笔记: 环境及安装前检查 硬件: T630 CPU32核 64G内存4G硬盘 显卡: [email protected]:~# lspci |grep -i nvidia 02:00.0 3D controller: NVIDIA Corporation GK110GL [Tesla K20Xm] (rev a1) 软件: Ubuntu14.04 server64bit版本:ubuntu-14.04.5-server-amd64.iso Python 2.7.12 [email p

caffe安装2

洋洋洒洒一大篇,就没截图了,这几天一直在折腾这个东西,实在没办法,不想用Linux但是,为了Caffe,只能如此了,安装这些东西,遇到很多问题,每个问题都要折磨很久,大概第一次就是这样的.想想,之后应用,应该还会遇到很多问题吧,不过没办法了,骑虎难下!!这里有个建议是,如果将来要做大数据集,最好事先给Linux留多点空间,比如Imagenet,估计500G都不为过.另外,请阅读完,至少一个部分再进行动手操作,避免多余的工作,写作能力有限,尽请见谅.        这篇安装指南,适合零基础,新手操

caffe安装1

affe是一个深度学习的库,相信搞深度学习的话,不是用这个库就是用theano吧.要想使用caffe首先第一步就是要配置好caffe的环境.在这里,我主要说的是在debian的linux环境下如何配置好caffe的库.因为python编写程序比较方便,在文章最后,我还会具体说明如何配置python环境.本文章为本人原创.非盈利性质网站转载请在文章开头处著名作者:77695,来源 http://www.cnblogs.com/cj695/ .盈利性质网站转载请与作者联系,联系方式在文章后面.如未联

ubuntu16.04 cuda8.0 opencv3.2.0 caffe安装

安装过程 1.安装相关依赖项 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libopenblas-dev liblapack-dev libat

Ubuntu16.04 Caffe 安装步骤记录(超详尽)

"-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> Ubuntu16.04 Caffe 安装步骤记录(超详尽) - yhao的博客 - 博客频道 - CSDN.NET yhao的博客 最怕庸碌无为,还安慰自己平凡可贵 目录视图 摘要视图 订阅 [活动]2017 CSDN博客专栏评选 &nbsp [5月书讯]流畅的Pyt

Ubuntu16.04+matlab2014a+anaconda2+OpenCV3.1+caffe安装

本次安装caffe是在新的笔记本上,感觉与之前在台式机上的安装还是有一定的区别.加之是在新的ubuntu16.04系统上安装的,可参考教程较少.而且其中添加了不少库,修改的一些错误,难免会有遗漏.如果发现本文未提及错误,欢迎一起讨论学习.另外,看到有的人说安装了半个多月,多次重装,希望有问题还是先把问题查清楚,不要盲目重装系统;其次,安装的时候最好记录自己安装的过程和内容,避免遗漏和重复,出问题了也可以与别人的教程相对比. 首先介绍安装条件和软件准备: - 联想笔记本电脑Y700-15ISK,双

Caffe学习笔记(一)——Windows 下caffe安装与配置

本文主要介绍:经过一番周折,在Windows7 64位系统下成功配置Caffe,下面总结一下基本的配置过程,以及配置过程中遇到的问题. 配置环境:Windows7 X64 + CUDA7.0 + VS2013 + Matlab2014a 1.安装CUDA 1.1. 版本选择 至于版本的选择,安装7.5.7.0和6.5版本都可以,安装包网上到处可见,分享一个自己安装的版本:http://pan.baidu.com/s/1i5AmAZb 1.2 安装过程 CUDA安装过程以及与VS关联过程参考: h