TOT 傅立叶变换 FFT 入门

HDU 1402,计算很大的两个数相乘。

FFT 只要78ms,这里;

一些FFT 入门资料:http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85.html (讲解的很详细

http://blog.csdn.net/iamzky/article/details/22712347 (这个也不错

另外算导的其实也蛮好,只是怕公式的看前面的也可。

IDFT只是FFT的逆变换,这里想了很久原来只要在FFT 变换后的结果后/N 即可,算实数部分即可。

前面的一份模板 :

1 /*

2     algorithm : High-Precision FFT
  3 
  4 */
  5 #include <cstdio>
  6 #include <cstring>
  7 #include <cmath>
  8 #include <algorithm>
  9 #define N 200005
 10 #define pi acos(-1.0) // PI值
 11 using namespace std;
 12 struct complex
 13 {
 14     double r,i;
 15     complex(double real=0.0,double image=0.0){
 16         r=real; i=image;
 17     }
 18     // 以下为三种虚数运算的定义
 19     complex operator + (const complex o){
 20         return complex(r+o.r,i+o.i);
 21     }
 22     complex operator - (const complex o){
 23         return complex(r-o.r,i-o.i);
 24     }
 25     complex operator * (const complex o){
 26         return complex(r*o.r-i*o.i,r*o.i+i*o.r);
 27     }
 28 }x1[N],x2[N];
 29 char a[N/2],b[N/2];
 30 int sum[N]; // 结果存在sum里
 31 void brc(complex *y,int l) // 二进制平摊反转置换 O(logn)
 32 {
 33     register int i,j,k;
 34     for(i=1,j=l/2;i<l-1;i++)
 35     {
 36         if(i<j)  swap(y[i],y[j]); // 交换互为下标反转的元素
 37                                 // i<j保证只交换一次
 38         k=l/2;
 39         while(j>=k) // 由最高位检索,遇1变0,遇0变1,跳出
 40         {
 41             j-=k;
 42             k/=2;
 43         }
 44         if(j<k)  j+=k;
 45     }
 46 }
 47 void fft(complex *y,int l,double on) // FFT O(nlogn)
 48                             // 其中on==1时为DFT,on==-1为IDFT
 49 {
 50     register int h,i,j,k;
 51     complex u,t;
 52     brc(y,l); // 调用反转置换
 53     for(h=2;h<=l;h<<=1) // 控制层数
 54     {
 55         // 初始化单位复根
 56         complex wn(cos(on*2*pi/h),sin(on*2*pi/h));
 57         for(j=0;j<l;j+=h) // 控制起始下标
 58         {
 59             complex w(1,0); // 初始化螺旋因子
 60             for(k=j;k<j+h/2;k++) // 配对
 61             {
 62                 u=y[k];
 63                 t=w*y[k+h/2];
 64                 y[k]=u+t;
 65                 y[k+h/2]=u-t;
 66                 w=w*wn; // 更新螺旋因子
 67             } // 据说上面的操作叫蝴蝶操作…
 68         }
 69     }
 70     if(on==-1)  for(i=0;i<l;i++) y[i].r/=l; // IDFT
 71 }
 72 int main(void)
 73 {
 74     int l1,l2,l;
 75     register int i;
 76     while(scanf("%s%s",a,b)!=EOF)
 77     {
 78         l1=strlen(a);
 79         l2=strlen(b);
 80         l=1;
 81         while(l<l1*2 || l<l2*2)   l<<=1; // 将次数界变成2^n
 82                                         // 配合二分与反转置换
 83         for(i=0;i<l1;i++) // 倒置存入
 84         {
 85             x1[i].r=a[l1-i-1]-‘0‘;
 86             x1[i].i=0.0;
 87         }
 88         for(;i<l;i++)    x1[i].r=x1[i].i=0.0;
 89         // 将多余次数界初始化为0
 90         for(i=0;i<l2;i++)
 91         {
 92             x2[i].r=b[l2-i-1]-‘0‘;
 93             x2[i].i=0.0;
 94         }
 95         for(;i<l;i++)    x2[i].r=x2[i].i=0.0;
 96         fft(x1,l,1); // DFT(a)
 97         fft(x2,l,1); // DFT(b)
 98         for(i=0;i<l;i++) x1[i]=x1[i]*x2[i]; // 点乘结果存入a
 99         fft(x1,l,-1); // IDFT(a*b)
100         for(i=0;i<l;i++) sum[i]=x1[i].r+0.5; // 四舍五入
101         for(i=0;i<l;i++) // 进位
102         {
103             sum[i+1]+=sum[i]/10;
104             sum[i]%=10;
105         }
106         l=l1+l2-1;
107         while(sum[l]<=0 && l>0)   l--; // 检索最高位
108         for(i=l;i>=0;i--)    putchar(sum[i]+‘0‘); // 倒序输出
109         putchar(‘\n‘);
110     }
111     return 0;

112 }

时间: 2024-10-11 05:00:49

TOT 傅立叶变换 FFT 入门的相关文章

快速傅立叶变换(FFT)相关内容汇总

FFT是近年考察非常频繁的算法,与其相关的知识点也相当多样. 这里主要是资料汇总,内容补充和总结等.具体应用应在各大OJ上做相关题目. 目录: 概述 1. 前置技能:数学基础 1.1 多项式概念与运算. 1.2 微积分初步与泰勒展开 1.3 普通型生成函数与指数型生成函数 1.4 线性代数相关(矩阵,行列式与特征多项式) 1.5 组合数与伯努利数 1.6 常系数齐次线性递推 1.7 初等数论与初等代数 1.8 卷积概念与O(n^2)求法 1.9 拉格朗日插值法 2. FFT:快速傅立叶变换算法总

傅立叶变换—FFT(cuda实现)

背景: 无意间看到cuda解决FFT有一个cufft函数库,大体查看了有关cufft有关知识,写了一个解决一维情况的cuda代码,据调查知道cufft在解决1D,2D,3D的情况时间复杂度都为O(nlogn),附上解决一维情况的代码,准备后面找一些详细的资料去学习一下cuda的函数库. #include "stdio.h" #include "cuda_runtime.h" #include "cufft.h" #include "de

傅立叶变换的深入理解 转载 数字信号处理

傅立叶变换的深入理解 2007年10月05日 星期五 16:41 专题讨论四:关于傅里叶变换的讨论[精彩] 有奖征集:大家讨论一下傅里叶变换相关的内容: 1 变换的目的,意义,应用. 2 傅里叶级数与傅里叶变换的差别和联系 3 连续傅里叶变换,离散时间傅里叶变换,离散傅里叶变换,序列的傅里叶变换,各自的定义,差别,联系. 3 高速傅里叶变换的实质,经常使用的算法之间的差别和联系,各自的优势. 4 fft的应用讨论: 1.变换是时间变量函数变成相应变换域的某种变量函数,这样使运算简单,处理方便.变

为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!! 一.傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅

Matlab图像处理系列4———图像傅立叶变换与反变换

注:本系列来自于图像处理课程实验,用Matlab实现最基本的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内可以加工处理图像以外,我们还可以将图像变换到其他空间后进行处理,这些方法称为变换域方法,最常见的变换域是频域. 使用Fourier变换把图像从空间域变换到频域,在频域内做相应增强处理,再从频域变换到空间域得到处理后的图像. 我们这里主要学习Fourier变换和FFT变换的算法,没有学过通信原理,我对信号.时域分析也不是很清楚. 2.FFT算法 (1)离散Fourier变

傅立叶变换的深入理解(转帖)

傅立叶变换的深入理解 2007年10月05日 星期五 16:41 专题讨论四:关于傅里叶变换的讨论[精彩] 有奖征集:大家讨论一下傅里叶变换相关的内容: 1 变换的目的,意义,应用. 2 傅里叶级数与傅里叶变换的差别和联系 3 连续傅里叶变换,离散时间傅里叶变换,离散傅里叶变换,序列的傅里叶变换,各自的定义,差别,联系. 3 高速傅里叶变换的实质,经常使用的算法之间的差别和联系,各自的优势. 4 fft的应用讨论: 1.变换是时间变量函数变成相应变换域的某种变量函数,这样使运算简单,处理方便.变

快速傅立叶变换

多项式 对于多项式$ f\left(x\right)=\sum_{i=0}^{|f|}{f_ix^i} $,其中|f|表示多项式的阶数,fi表示多项式f中x^i的系数. 多项式的加法定义为$ c\left(x\right)=a\left(x\right)+b\left(x\right)=\sum_{i=0}^{\max\left(|a|,|b|\right)}{\left(a_i+b_i\right)x^i} $,即$ c_k=a_k+b_k $. 多项式的乘法定义为$ c\left(x\rig

hdu 4609 3-idiots 【FFT快(gui)速傅立叶变换】

FFT实现起来挺复杂的,开始用vector,结果发现空间超了,换成数组还是超,删掉了几个后又超时了 sin cos 函数调用次数太多了,改成乘法,还是超时 最后把FFT里的除法运算和模运算优化了一下,终于过了,排的老后面 坑,3843MS,一看时间最少的只有671MS,我都怀疑这是不是同一个算法..为毛差距这么大 #pragma comment(linker, "/STACK:102400000,102400000") #include<iostream> #include

快速傅立叶变换算法FFT——图像处理中的数学原理详解22

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 交流学习可加图像处理研究学习QQ群(529549320) 傅立叶变换以高等数学(微积分)中的傅立叶级数为基